Which release of Spark are you using ?

Can you show skeleton of your partitioner and comparator ?

Thanks



> On Sep 9, 2015, at 4:45 PM, Ashish Shenoy <ashe...@instartlogic.com> wrote:
> 
> Hi,
> 
> I am trying to sort a RDD pair using repartitionAndSortWithinPartitions() for 
> my key [which is a custom class, not a java primitive] using a custom 
> partitioner on that key and a custom comparator. However, it fails 
> consistently:
> 
> org.apache.spark.SparkException: Job aborted due to stage failure: Task 18 in 
> stage 1.0 failed 4 times, most recent failure: Lost task 18.3 in stage 1.0 
> (TID 202, 172.16.18.25): java.lang.ArrayIndexOutOfBoundsException: -78
>         at 
> org.apache.spark.util.collection.ExternalSorter.spillToPartitionFiles(ExternalSorter.scala:375)
>         at 
> org.apache.spark.util.collection.ExternalSorter.insertAll(ExternalSorter.scala:208)
>         at 
> org.apache.spark.shuffle.sort.SortShuffleWriter.write(SortShuffleWriter.scala:62)
>         at 
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:70)
>         at 
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
>         at org.apache.spark.scheduler.Task.run(Task.scala:70)
>         at 
> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
>         at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
>         at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
>         at java.lang.Thread.run(Thread.java:745)
> 
> Driver stacktrace:
>         at 
> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1273)
>         at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1264)
>         at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1263)
>         at 
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>         at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>         at 
> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1263)
>         at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:730)
>         at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:730)
>         at scala.Option.foreach(Option.scala:236)
>         at 
> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:730)
>         at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1457)
>         at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1418)
>         at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
> 
> I also persist the RDD using the "memory and disk" storage level. The stack 
> trace above comes from spark's code and not my application code. Can you pls 
> point out what I am doing wrong ?
> 
> Thanks,
> Ashish

Reply via email to