I get java.lang.OutOfMemoryError: GC overhead limit exceeded when trying coutn action on a file.
The file is a CSV file 217GB zise Im using a 10 r3.8xlarge(ubuntu) machines cdh 5.3.6 and spark 1.2.0 configutation: spark.app.id:local-1443956477103 spark.app.name:Spark shell spark.cores.max:100 spark.driver.cores:24 spark.driver.extraLibraryPath:/opt/cloudera/parcels/CDH-5.3.6-1.cdh5.3.6.p0.11/lib/hadoop/lib/native spark.driver.host:ip-172-31-34-242.us-west-2.compute.internal spark.driver.maxResultSize:300g spark.driver.port:55123 spark.eventLog.dir:hdfs://ip-172-31-34-242.us-west-2.compute.internal:8020/user/spark/applicationHistory spark.eventLog.enabled:true spark.executor.extraLibraryPath:/opt/cloudera/parcels/CDH-5.3.6-1.cdh5.3.6.p0.11/lib/hadoop/lib/native spark.executor.id:driver spark.executor.memory:200g spark.fileserver.uri:http://172.31.34.242:51424 spark.jars: spark.master:local[*] spark.repl.class.uri:http://172.31.34.242:58244 spark.scheduler.mode:FIFO spark.serializer:org.apache.spark.serializer.KryoSerializer spark.storage.memoryFraction:0.9 spark.tachyonStore.folderName:spark-88bd9c44-d626-4ad2-8df3-f89df4cb30de spark.yarn.historyServer.address:http://ip-172-31-34-242.us-west-2.compute.internal:18088 here is what I ran: val testrdd = sc.textFile("hdfs://ip-172-31-34-242.us-west-2.compute.internal:8020/user/jethro/tables/edw_fact_lsx_detail/edw_fact_lsx_detail.csv") testrdd.persist(org.apache.spark.storage.StorageLevel.MEMORY_ONLY_SER) testrdd.count() If I dont force it in memeory it sorks fine, but considering the cluster Im running on it should fit in memory properly. Any ideas? -- View this message in context: http://apache-spark-user-list.1001560.n3.nabble.com/java-lang-OutOfMemoryError-GC-overhead-limit-exceeded-tp24918.html Sent from the Apache Spark User List mailing list archive at Nabble.com. --------------------------------------------------------------------- To unsubscribe, e-mail: user-unsubscr...@spark.apache.org For additional commands, e-mail: user-h...@spark.apache.org