No. this is the only exception that im getting multiple times in my log.
Also i was reading some other topics earlier but im not faced this NPE.

*Thanks*,
<https://in.linkedin.com/in/ramkumarcs31>


On Fri, Oct 30, 2015 at 2:50 PM, Saisai Shao <sai.sai.s...@gmail.com> wrote:

> I just did a local test with your code, seems everything is fine, the only
> difference is that I use the master branch, but I don't think it changes a
> lot in this part. Do you met any other exceptions or errors beside this
> one? Probably this is due to other exceptions that makes this system
> unstable.
>
> On Fri, Oct 30, 2015 at 5:13 PM, Ramkumar V <ramkumar.c...@gmail.com>
> wrote:
>
>> No, i dont have any special settings. if i keep only reading line in my
>> code, it's throwing NPE.
>>
>> *Thanks*,
>> <https://in.linkedin.com/in/ramkumarcs31>
>>
>>
>> On Fri, Oct 30, 2015 at 2:14 PM, Saisai Shao <sai.sai.s...@gmail.com>
>> wrote:
>>
>>> Do you have any special settings, from your code, I don't think it will
>>> incur NPE at that place.
>>>
>>> On Fri, Oct 30, 2015 at 4:32 PM, Ramkumar V <ramkumar.c...@gmail.com>
>>> wrote:
>>>
>>>> spark version - spark 1.4.1
>>>>
>>>> my code snippet:
>>>>
>>>> String brokers = "ip:port,ip:port";
>>>> String topics = "x,y,z";
>>>> HashSet<String> TopicsSet = new
>>>> HashSet<String>(Arrays.asList(topics.split(",")));
>>>> HashMap<String, String> kafkaParams = new HashMap<String, String>();
>>>> kafkaParams.put("metadata.broker.list", brokers);
>>>>
>>>> JavaPairInputDStream<String, String> messages =
>>>> KafkaUtils.createDirectStream(
>>>>            jssc,
>>>>            String.class,
>>>>            String.class,
>>>>            StringDecoder.class,
>>>>            StringDecoder.class,
>>>>            kafkaParams,
>>>>             TopicsSet
>>>>        );
>>>>
>>>> messages.foreachRDD(new Function<JavaPairRDD<String , String>,Void> () {
>>>>             public Void call(JavaPairRDD<String , String> tuple) {
>>>>                 JavaRDD<String>rdd = tuple.values();
>>>>
>>>> rdd.saveAsTextFile("hdfs://myuser:8020/user/hdfs/output");
>>>>                 return null;
>>>>             }
>>>>        });
>>>>
>>>>
>>>> *Thanks*,
>>>> <https://in.linkedin.com/in/ramkumarcs31>
>>>>
>>>>
>>>> On Fri, Oct 30, 2015 at 1:57 PM, Saisai Shao <sai.sai.s...@gmail.com>
>>>> wrote:
>>>>
>>>>> What Spark version are you using, also a small code snippet of how you
>>>>> use Spark Streaming would be greatly helpful.
>>>>>
>>>>> On Fri, Oct 30, 2015 at 3:57 PM, Ramkumar V <ramkumar.c...@gmail.com>
>>>>> wrote:
>>>>>
>>>>>> I can able to read and print few lines. Afterthat i'm getting this
>>>>>> exception. Any idea for this ?
>>>>>>
>>>>>> *Thanks*,
>>>>>> <https://in.linkedin.com/in/ramkumarcs31>
>>>>>>
>>>>>>
>>>>>> On Thu, Oct 29, 2015 at 6:14 PM, Ramkumar V <ramkumar.c...@gmail.com>
>>>>>> wrote:
>>>>>>
>>>>>>> Hi,
>>>>>>>
>>>>>>> I'm trying to read from kafka stream and printing it textfile. I'm
>>>>>>> using java over spark. I dont know why i'm getting the following 
>>>>>>> exception.
>>>>>>> Also exception message is very abstract.  can anyone please help me ?
>>>>>>>
>>>>>>> Log Trace :
>>>>>>>
>>>>>>> 15/10/29 12:15:09 ERROR scheduler.JobScheduler: Error in job
>>>>>>> generator
>>>>>>> java.lang.NullPointerException
>>>>>>>         at
>>>>>>> org.apache.spark.streaming.DStreamGraph$$anonfun$getMaxInputStreamRememberDuration$2.apply(DStreamGraph.scala:172)
>>>>>>>         at
>>>>>>> org.apache.spark.streaming.DStreamGraph$$anonfun$getMaxInputStreamRememberDuration$2.apply(DStreamGraph.scala:172)
>>>>>>>         at
>>>>>>> scala.collection.TraversableOnce$$anonfun$maxBy$1.apply(TraversableOnce.scala:225)
>>>>>>>         at
>>>>>>> scala.collection.IndexedSeqOptimized$class.foldl(IndexedSeqOptimized.scala:51)
>>>>>>>         at
>>>>>>> scala.collection.IndexedSeqOptimized$class.reduceLeft(IndexedSeqOptimized.scala:68)
>>>>>>>         at
>>>>>>> scala.collection.mutable.ArrayBuffer.reduceLeft(ArrayBuffer.scala:47)
>>>>>>>         at
>>>>>>> scala.collection.TraversableOnce$class.maxBy(TraversableOnce.scala:225)
>>>>>>>         at
>>>>>>> scala.collection.AbstractTraversable.maxBy(Traversable.scala:105)
>>>>>>>         at
>>>>>>> org.apache.spark.streaming.DStreamGraph.getMaxInputStreamRememberDuration(DStreamGraph.scala:172)
>>>>>>>         at
>>>>>>> org.apache.spark.streaming.scheduler.JobGenerator.clearMetadata(JobGenerator.scala:267)
>>>>>>>         at org.apache.spark.streaming.scheduler.JobGenerator.org
>>>>>>> $apache$spark$streaming$scheduler$JobGenerator$$processEvent(JobGenerator.scala:178)
>>>>>>>         at
>>>>>>> org.apache.spark.streaming.scheduler.JobGenerator$$anon$1.onReceive(JobGenerator.scala:83)
>>>>>>>         at
>>>>>>> org.apache.spark.streaming.scheduler.JobGenerator$$anon$1.onReceive(JobGenerator.scala:82)
>>>>>>>         at
>>>>>>> org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
>>>>>>> 15/10/29 12:15:09 ERROR yarn.ApplicationMaster: User class threw
>>>>>>> exception: java.lang.NullPointerException
>>>>>>> java.lang.NullPointerException
>>>>>>>         at
>>>>>>> org.apache.spark.streaming.DStreamGraph$$anonfun$getMaxInputStreamRememberDuration$2.apply(DStreamGraph.scala:172)
>>>>>>>         at
>>>>>>> org.apache.spark.streaming.DStreamGraph$$anonfun$getMaxInputStreamRememberDuration$2.apply(DStreamGraph.scala:172)
>>>>>>>         at
>>>>>>> scala.collection.TraversableOnce$$anonfun$maxBy$1.apply(TraversableOnce.scala:225)
>>>>>>>         at
>>>>>>> scala.collection.IndexedSeqOptimized$class.foldl(IndexedSeqOptimized.scala:51)
>>>>>>>         at
>>>>>>> scala.collection.IndexedSeqOptimized$class.reduceLeft(IndexedSeqOptimized.scala:68)
>>>>>>>         at
>>>>>>> scala.collection.mutable.ArrayBuffer.reduceLeft(ArrayBuffer.scala:47)
>>>>>>>         at
>>>>>>> scala.collection.TraversableOnce$class.maxBy(TraversableOnce.scala:225)
>>>>>>>         at
>>>>>>> scala.collection.AbstractTraversable.maxBy(Traversable.scala:105)
>>>>>>>         at
>>>>>>> org.apache.spark.streaming.DStreamGraph.getMaxInputStreamRememberDuration(DStreamGraph.scala:172)
>>>>>>>         at
>>>>>>> org.apache.spark.streaming.scheduler.JobGenerator.clearMetadata(JobGenerator.scala:267)
>>>>>>>         at org.apache.spark.streaming.scheduler.JobGenerator.org
>>>>>>> $apache$spark$streaming$scheduler$JobGenerator$$processEvent(JobGenerator.scala:178)
>>>>>>>         at
>>>>>>> org.apache.spark.streaming.scheduler.JobGenerator$$anon$1.onReceive(JobGenerator.scala:83)
>>>>>>>         at
>>>>>>> org.apache.spark.streaming.scheduler.JobGenerator$$anon$1.onReceive(JobGenerator.scala:82)
>>>>>>>         at
>>>>>>> org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
>>>>>>>
>>>>>>>
>>>>>>>
>>>>>>> *Thanks*,
>>>>>>> <https://in.linkedin.com/in/ramkumarcs31>
>>>>>>>
>>>>>>>
>>>>>>
>>>>>
>>>>
>>>
>>
>

Reply via email to