I found out that by commenting this line in the application code:
sparkConf.set("spark.executor.extraJavaOptions", " -XX:+UseCompressedOops
-XX:+UseConcMarkSweepGC -XX:+AggressiveOpts -XX:FreqInlineSize=300
-XX:MaxInlineSize=300 ")

the exception does not occur anymore.  Not entirely sure why, but
everything goes fine without that line.

Thanks!

On Tue, Dec 29, 2015 at 1:39 PM, Prem Spark <sparksure...@gmail.com> wrote:

> you need make sure this class is accessible to all servers since its a
> cluster mode and drive can be on any of the worker nodes.
>
>
> On Fri, Dec 25, 2015 at 5:57 PM, Saiph Kappa <saiph.ka...@gmail.com>
> wrote:
>
>> Hi,
>>
>> I'm submitting a spark job like this:
>>
>> ~/spark-1.5.2-bin-hadoop2.6/bin/spark-submit --class Benchmark --master
>>> spark://machine1:6066 --deploy-mode cluster --jars
>>> target/scala-2.10/benchmark-app_2.10-0.1-SNAPSHOT.jar
>>> /home/user/bench/target/scala-2.10/benchmark-app_2.10-0.1-SNAPSHOT.jar 1
>>> machine2 9999 1000
>>>
>>
>> and in the driver stderr, I get the following exception:
>>
>>  WARN TaskSetManager: Lost task 0.0 in stage 4.0 (TID 74,
>>> XXX.XXX.XX.XXX): java.lang.ClassNotFoundException: Benchmark$$anonfun$main$1
>>>         at java.net.URLClassLoader$1.run(URLClassLoader.java:366)
>>>         at java.net.URLClassLoader$1.run(URLClassLoader.java:355)
>>>         at java.security.AccessController.doPrivileged(Native Method)
>>>         at java.net.URLClassLoader.findClass(URLClassLoader.java:354)
>>>         at java.lang.ClassLoader.loadClass(ClassLoader.java:425)
>>>         at java.lang.ClassLoader.loadClass(ClassLoader.java:358)
>>>         at java.lang.Class.forName0(Native Method)
>>>         at java.lang.Class.forName(Class.java:270)
>>>         at
>>> org.apache.spark.serializer.JavaDeserializationStream$$anon$1.resolveClass(JavaSerializer.scala:67)
>>>         at
>>> java.io.ObjectInputStream.readNonProxyDesc(ObjectInputStream.java:1612)
>>>         at
>>> java.io.ObjectInputStream.readClassDesc(ObjectInputStream.java:1517)
>>>         at
>>> java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1771)
>>>         at
>>> java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
>>>         at
>>> java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1990)
>>>         at
>>> java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1915)
>>>         at
>>> java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798)
>>>         at
>>> java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
>>>         at
>>> java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1990)
>>>         at
>>> java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1915)
>>>         at
>>> java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798)
>>>         at
>>> java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
>>>         at
>>> java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1990)
>>>         at
>>> java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1915)
>>>         at
>>> java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798)
>>>         at
>>> java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
>>>         at
>>> java.io.ObjectInputStream.readObject(ObjectInputStream.java:370)
>>>         at
>>> org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:72)
>>>         at
>>> org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:98)
>>>         at
>>> org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:61)
>>>         at org.apache.spark.scheduler.Task.run(Task.scala:88)
>>>         at
>>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
>>>         at
>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>>>         at
>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>>>         at java.lang.Thread.run(Thread.java:745)
>>>
>>
>> Note that everything works fine when using deploy-mode as 'client'.
>> This is the application that I'm trying to run:
>> https://github.com/tdas/spark-streaming-benchmark (this problem also
>> happens for non streaming applications)
>>
>> What can I do to sort this out?
>>
>> Thanks.
>>
>
>

Reply via email to