Thanks, I would go with log disabling.
BTW, the master crashed while the application was still running.

------------------------------

*Mariano Semelman*
P13N - IT
Av. Corrientes Nº 746 - piso 13 - C.A.B.A. (C1043AAU)
Teléfono (54) 11- *4894-3500*


[image: Seguinos en Twitter!] <http://twitter.com/#!/despegarar> [image:
Seguinos en Facebook!] <http://www.facebook.com/despegar> [image: Seguinos
en YouTube!] <http://www.youtube.com/Despegar>
*Despegar.com*
El mejor precio para tu viaje.

Este mensaje es confidencial y puede contener información amparada por el
secreto profesional. Si usted ha recibido este e-mail por error, por favor
comuníquenoslo inmediatamente respondiendo a este e-mail y luego
eliminándolo de su sistema. El contenido de este mensaje no deberá ser
copiado ni divulgado a ninguna persona.

On 13 September 2016 at 12:52, Bryan Cutler <cutl...@gmail.com> wrote:

> It looks like you have logging enabled and your application event log is
> too large for the master to build a web UI from it.  In spark 1.6.2 and
> earlier, when an application completes, the master rebuilds a web UI to
> view events after the fact.  This functionality was removed in spark 2.0
> and the history server should be used instead.  If you are unable to
> upgrade could you try disabling logging?
>
> On Sep 13, 2016 7:18 AM, "Mariano Semelman" <mariano.semel...@despegar.com>
> wrote:
>
>> Hello everybody,
>>
>> I am running a spark streaming app and I am planning to use it as a long
>> running service. However while trying the app in a rc environment I got
>> this exception in the master daemon after 1 hour of running:
>>
>> ​​Exception in thread "master-rebuild-ui-thread"
>> java.lang.OutOfMemoryError: GC overhead limit exceeded
>>         at java.util.regex.Pattern.compile(Pattern.java:1667)
>>         at java.util.regex.Pattern.<init>(Pattern.java:1351)
>>         at java.util.regex.Pattern.compile(Pattern.java:1054)
>>         at java.lang.String.replace(String.java:2239)
>>         at org.apache.spark.util.Utils$.getFormattedClassName(Utils.sca
>> la:1632)
>>         at org.apache.spark.util.JsonProtocol$.sparkEventFromJson(JsonP
>> rotocol.scala:486)
>>         at org.apache.spark.scheduler.ReplayListenerBus.replay(ReplayLi
>> stenerBus.scala:58)
>>         at org.apache.spark.deploy.master.Master$$anonfun$17.apply(
>> Master.scala:972)
>>         at org.apache.spark.deploy.master.Master$$anonfun$17.apply(
>> Master.scala:952)
>>         at scala.concurrent.impl.Future$PromiseCompletingRunnable.lifte
>> dTree1$1(Future.scala:24)
>>         at scala.concurrent.impl.Future$PromiseCompletingRunnable.run(F
>> uture.scala:24)
>>         at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPool
>> Executor.java:1142)
>>         at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoo
>> lExecutor.java:617)
>>         at java.lang.Thread.run(Thread.java:745)
>>
>>
>> As a palliative measure I've increased the master memory to 1.5gb.
>> My job is running with a batch interval of 5 seconds.
>> I'm using spark version 1.6.2.
>>
>> I think it might be related to this issues:
>>
>> https://issues.apache.org/jira/browse/SPARK-6270
>> https://issues.apache.org/jira/browse/SPARK-12062
>> https://issues.apache.org/jira/browse/SPARK-12299
>>
>> But I don't see a clear road to solve this apart from upgrading spark.
>> What would you recommend?
>>
>>
>> Thanks in advance
>> Mariano
>>
>>

Reply via email to