Thanks a lot!
Just another question, how can I extract the minutes as a number?
I can use:
.withColumn('duration_m',split(flight.duration,'h').getItem(1)
to get strings like '10m'
but how do I drop the charater "m" at the end? I can use substr(), but
what's the function to get the length of the string so that I can do
something like substr(1, len(...)-1)?
On Thu, Apr 20, 2017 at 11:36 PM, Pushkar.Gujar <[email protected]>
wrote:
> Can be as simple as -
>
> from pyspark.sql.functions import split
>
> flight.withColumn('hour',split(flight.duration,'h').getItem(0))
>
>
> Thank you,
> *Pushkar Gujar*
>
>
> On Thu, Apr 20, 2017 at 4:35 AM, Zeming Yu <[email protected]> wrote:
>
>> Any examples?
>>
>> On 20 Apr. 2017 3:44 pm, "颜发才(Yan Facai)" <[email protected]> wrote:
>>
>>> How about using `withColumn` and UDF?
>>>
>>> example:
>>> + https://gist.github.com/zoltanctoth/2deccd69e3d1cde1dd78
>>> <https://gist.github.com/zoltanctoth/2deccd69e3d1cde1dd78>
>>> + https://ragrawal.wordpress.com/2015/10/02/spark-custom-udf-example/
>>>
>>>
>>>
>>> On Mon, Apr 17, 2017 at 8:25 PM, Zeming Yu <[email protected]> wrote:
>>>
>>>> I've got a dataframe with a column looking like this:
>>>>
>>>> display(flight.select("duration").show())
>>>>
>>>> +--------+
>>>> |duration|
>>>> +--------+
>>>> | 15h10m|
>>>> | 17h0m|
>>>> | 21h25m|
>>>> | 14h30m|
>>>> | 24h50m|
>>>> | 26h10m|
>>>> | 14h30m|
>>>> | 23h5m|
>>>> | 21h30m|
>>>> | 11h50m|
>>>> | 16h10m|
>>>> | 15h15m|
>>>> | 21h25m|
>>>> | 14h25m|
>>>> | 14h40m|
>>>> | 16h0m|
>>>> | 24h20m|
>>>> | 14h30m|
>>>> | 14h25m|
>>>> | 14h30m|
>>>> +--------+
>>>> only showing top 20 rows
>>>>
>>>>
>>>>
>>>> I need to extract the hour as a number and store it as an additional
>>>> column within the same dataframe. What's the best way to do that?
>>>>
>>>>
>>>> I tried the following, but it failed:
>>>>
>>>> import re
>>>> def getHours(x):
>>>> return re.match('([0-9]+(?=h))', x)
>>>> temp = flight.select("duration").rdd.map(lambda
>>>> x:getHours(x[0])).toDF()
>>>> temp.select("duration").show()
>>>>
>>>>
>>>> error message:
>>>>
>>>>
>>>> ---------------------------------------------------------------------------Py4JJavaError
>>>> Traceback (most recent call
>>>> last)<ipython-input-89-1d5bec255302> in <module>() 2 def getHours(x):
>>>> 3 return re.match('([0-9]+(?=h))', x)----> 4 temp =
>>>> flight.select("duration").rdd.map(lambda x:getHours(x[0])).toDF() 5
>>>> temp.select("duration").show()
>>>> C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\pyspark\sql\session.py
>>>> in toDF(self, schema, sampleRatio) 55 [Row(name=u'Alice',
>>>> age=1)] 56 """---> 57 return
>>>> sparkSession.createDataFrame(self, schema, sampleRatio) 58 59
>>>> RDD.toDF = toDF
>>>> C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\pyspark\sql\session.py
>>>> in createDataFrame(self, data, schema, samplingRatio, verifySchema)
>>>> 518 519 if isinstance(data, RDD):--> 520 rdd,
>>>> schema = self._createFromRDD(data.map(prepare), schema, samplingRatio)
>>>> 521 else: 522 rdd, schema =
>>>> self._createFromLocal(map(prepare, data), schema)
>>>> C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\pyspark\sql\session.py
>>>> in _createFromRDD(self, rdd, schema, samplingRatio) 358 """
>>>> 359 if schema is None or isinstance(schema, (list, tuple)):--> 360
>>>> struct = self._inferSchema(rdd, samplingRatio) 361
>>>> converter = _create_converter(struct) 362 rdd =
>>>> rdd.map(converter)
>>>> C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\pyspark\sql\session.py
>>>> in _inferSchema(self, rdd, samplingRatio) 329 :return:
>>>> :class:`pyspark.sql.types.StructType` 330 """--> 331
>>>> first = rdd.first() 332 if not first: 333 raise
>>>> ValueError("The first row in RDD is empty, "
>>>> C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\pyspark\rdd.py
>>>> in first(self) 1359 ValueError: RDD is empty 1360
>>>> """-> 1361 rs = self.take(1) 1362 if rs: 1363
>>>> return rs[0]
>>>> C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\pyspark\rdd.py
>>>> in take(self, num) 1341 1342 p = range(partsScanned,
>>>> min(partsScanned + numPartsToTry, totalParts))-> 1343 res =
>>>> self.context.runJob(self, takeUpToNumLeft, p) 1344 1345
>>>> items += res
>>>> C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\pyspark\context.py
>>>> in runJob(self, rdd, partitionFunc, partitions, allowLocal) 963
>>>> # SparkContext#runJob. 964 mappedRDD =
>>>> rdd.mapPartitions(partitionFunc)--> 965 port =
>>>> self._jvm.PythonRDD.runJob(self._jsc.sc(), mappedRDD._jrdd, partitions)
>>>> 966 return list(_load_from_socket(port,
>>>> mappedRDD._jrdd_deserializer)) 967
>>>> C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\lib\py4j-0.10.4-src.zip\py4j\java_gateway.py
>>>> in __call__(self, *args) 1131 answer =
>>>> self.gateway_client.send_command(command) 1132 return_value =
>>>> get_return_value(-> 1133 answer, self.gateway_client,
>>>> self.target_id, self.name) 1134 1135 for temp_arg in
>>>> temp_args:
>>>> C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\pyspark\sql\utils.py
>>>> in deco(*a, **kw) 61 def deco(*a, **kw): 62 try:--->
>>>> 63 return f(*a, **kw) 64 except
>>>> py4j.protocol.Py4JJavaError as e: 65 s =
>>>> e.java_exception.toString()
>>>> C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\lib\py4j-0.10.4-src.zip\py4j\protocol.py
>>>> in get_return_value(answer, gateway_client, target_id, name) 317
>>>> raise Py4JJavaError( 318 "An error
>>>> occurred while calling {0}{1}{2}.\n".--> 319
>>>> format(target_id, ".", name), value) 320 else: 321
>>>> raise Py4JError(
>>>> Py4JJavaError: An error occurred while calling
>>>> z:org.apache.spark.api.python.PythonRDD.runJob.
>>>> : org.apache.spark.SparkException: Job aborted due to stage failure: Task
>>>> 0 in stage 75.0 failed 1 times, most recent failure: Lost task 0.0 in
>>>> stage 75.0 (TID 1035, localhost, executor driver):
>>>> org.apache.spark.api.python.PythonException: Traceback (most recent call
>>>> last):
>>>> File
>>>> "C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\worker.py",
>>>> line 174, in main
>>>> File
>>>> "C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\worker.py",
>>>> line 169, in process
>>>> File
>>>> "C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\serializers.py",
>>>> line 272, in dump_stream
>>>> bytes = self.serializer.dumps(vs)
>>>> File
>>>> "C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\serializers.py",
>>>> line 427, in dumps
>>>> return pickle.dumps(obj, protocol)
>>>> _pickle.PicklingError: Can't pickle <class '_sre.SRE_Match'>: attribute
>>>> lookup SRE_Match on _sre failed
>>>>
>>>> at
>>>> org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193)
>>>> at
>>>> org.apache.spark.api.python.PythonRunner$$anon$1.<init>(PythonRDD.scala:234)
>>>> at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
>>>> at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
>>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
>>>> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
>>>> at org.apache.spark.scheduler.Task.run(Task.scala:99)
>>>> at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
>>>> at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
>>>> at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
>>>> at java.lang.Thread.run(Unknown Source)
>>>>
>>>> Driver stacktrace:
>>>> at
>>>> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1435)
>>>> at
>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1423)
>>>> at
>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1422)
>>>> at
>>>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>>>> at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
>>>> at
>>>> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1422)
>>>> at
>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
>>>> at
>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
>>>> at scala.Option.foreach(Option.scala:257)
>>>> at
>>>> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802)
>>>> at
>>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1650)
>>>> at
>>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1605)
>>>> at
>>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1594)
>>>> at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
>>>> at
>>>> org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628)
>>>> at org.apache.spark.SparkContext.runJob(SparkContext.scala:1918)
>>>> at org.apache.spark.SparkContext.runJob(SparkContext.scala:1931)
>>>> at org.apache.spark.SparkContext.runJob(SparkContext.scala:1944)
>>>> at org.apache.spark.api.python.PythonRDD$.runJob(PythonRDD.scala:441)
>>>> at org.apache.spark.api.python.PythonRDD.runJob(PythonRDD.scala)
>>>> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
>>>> at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
>>>> at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
>>>> at java.lang.reflect.Method.invoke(Unknown Source)
>>>> at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
>>>> at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
>>>> at py4j.Gateway.invoke(Gateway.java:280)
>>>> at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
>>>> at py4j.commands.CallCommand.execute(CallCommand.java:79)
>>>> at py4j.GatewayConnection.run(GatewayConnection.java:214)
>>>> at java.lang.Thread.run(Unknown Source)
>>>> Caused by: org.apache.spark.api.python.PythonException: Traceback (most
>>>> recent call last):
>>>> File
>>>> "C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\worker.py",
>>>> line 174, in main
>>>> File
>>>> "C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\worker.py",
>>>> line 169, in process
>>>> File
>>>> "C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\serializers.py",
>>>> line 272, in dump_stream
>>>> bytes = self.serializer.dumps(vs)
>>>> File
>>>> "C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\serializers.py",
>>>> line 427, in dumps
>>>> return pickle.dumps(obj, protocol)
>>>> _pickle.PicklingError: Can't pickle <class '_sre.SRE_Match'>: attribute
>>>> lookup SRE_Match on _sre failed
>>>>
>>>> at
>>>> org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193)
>>>> at
>>>> org.apache.spark.api.python.PythonRunner$$anon$1.<init>(PythonRDD.scala:234)
>>>> at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
>>>> at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
>>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
>>>> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
>>>> at org.apache.spark.scheduler.Task.run(Task.scala:99)
>>>> at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
>>>> at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
>>>> at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
>>>> ... 1 more
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>
>