I think the problem is because you are calling "model2 = ALSModel.load("/models/als")" instead of "model2 = *model*.load("/models/als")". See my working sample below.
>>> model.save('/models/als.test') SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder". SLF4J: Defaulting to no-operation (NOP) logger implementation SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details. >>> model2 = model.load('/models/als.test') >>> model ALS_4324a1082d889dd1f0e4 >>> model2 ALS_4324a1082d889dd1f0e4 Thank You, Irving Duran On Sat, Jul 29, 2017 at 2:57 PM, Cristian Garcia <cgarcia....@gmail.com> wrote: > This code is not working: > > ================ > from pyspark.ml.evaluation import RegressionEvaluator > from pyspark.ml.recommendation import ALS, ALSModel > from pyspark.sql import Row > > als = ALS(maxIter=10, regParam=0.01, userCol="user_id", > itemCol="movie_id", ratingCol="rating") > model = als.fit(training) > > model.save("/models/als") > > model2 = ALSModel.load("/models/als") # <-- error here > ================= > > > > Gives rise to this error: > ================= > > ---------------------------------------------------------------------------Py4JJavaError > Traceback (most recent call > last)<ipython-input-24-c0454f47bb1d> in <module>()----> 1 m2 = > ALSModel.load("/models/als") > /usr/local/spark/python/pyspark/ml/util.py in load(cls, path) 251 def > load(cls, path): 252 """Reads an ML instance from the input path, > a shortcut of `read().load(path)`."""--> 253 return > cls.read().load(path) 254 255 > /usr/local/spark/python/pyspark/ml/util.py in load(self, path) 192 > if not isinstance(path, basestring): 193 raise TypeError("path > should be a basestring, got type %s" % type(path))--> 194 java_obj = > self._jread.load(path) 195 if not hasattr(self._clazz, > "_from_java"): 196 raise NotImplementedError("This Java ML > type cannot be loaded into Python currently: %r" > /usr/local/spark/python/lib/py4j-0.10.4-src.zip/py4j/java_gateway.py in > __call__(self, *args) 1131 answer = > self.gateway_client.send_command(command) 1132 return_value = > get_return_value(-> 1133 answer, self.gateway_client, > self.target_id, self.name) 1134 1135 for temp_arg in temp_args: > /usr/local/spark/python/pyspark/sql/utils.py in deco(*a, **kw) 61 def > deco(*a, **kw): 62 try:---> 63 return f(*a, **kw) > 64 except py4j.protocol.Py4JJavaError as e: 65 s = > e.java_exception.toString() > /usr/local/spark/python/lib/py4j-0.10.4-src.zip/py4j/protocol.py in > get_return_value(answer, gateway_client, target_id, name) 317 > raise Py4JJavaError( 318 "An error occurred while > calling {0}{1}{2}.\n".--> 319 format(target_id, ".", > name), value) 320 else: 321 raise Py4JError( > Py4JJavaError: An error occurred while calling o337.load. > : java.lang.UnsupportedOperationException: empty collection > at org.apache.spark.rdd.RDD$$anonfun$first$1.apply(RDD.scala:1370) > at > org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) > at > org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) > at org.apache.spark.rdd.RDD.withScope(RDD.scala:362) > at org.apache.spark.rdd.RDD.first(RDD.scala:1367) > at > org.apache.spark.ml.util.DefaultParamsReader$.loadMetadata(ReadWrite.scala:379) > at > org.apache.spark.ml.recommendation.ALSModel$ALSModelReader.load(ALS.scala:317) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at > sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) > at > sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:498) > at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) > at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) > at py4j.Gateway.invoke(Gateway.java:280) > at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) > at py4j.commands.CallCommand.execute(CallCommand.java:79) > at py4j.GatewayConnection.run(GatewayConnection.java:214) > at java.lang.Thread.run(Thread.java:748) > > ================= >