Agree with Jorn. The answer is: it depends. In the past, I've worked with data scientists who are happy to use the Spark CLI. Again, the answer is "it depends" (in this case, on the skills of your customers).
Regarding sharing resources, different teams were limited to their own queue so they could not hog all the resources. However, people within a team had to do some horse trading if they had a particularly intensive job to run. I did feel that this was an area that could be improved. It may be by now, I've just not looked into it for a while. BTW I'm not sure what you mean by "Spark still does not provide spill to disk" as the FAQ says "Spark's operators spill data to disk if it does not fit in memory" (http://spark.apache.org/faq.html). So, your data will not normally cause OutOfMemoryErrors (certain terms and conditions may apply). My 2 cents. Phillip On Sun, Nov 12, 2017 at 9:14 AM, Jörn Franke <jornfra...@gmail.com> wrote: > What do you mean all possible workloads? > You cannot prepare any system to do all possible processing. > > We do not know the requirements of your data scientists now or in the > future so it is difficult to say. How do they work currently without the > new solution? Do they all work on the same data? I bet you will receive on > your email a lot of private messages trying to sell their solution that > solves everything - with the information you provided this is impossible to > say. > > Then with every system: have incremental releases but have then in short > time frames - do not engineer a big system that you will deliver in 2 > years. In the cloud you have the perfect possibility to scale feature but > also infrastructure wise. > > Challenges with concurrent queries is the right definition of the > scheduler (eg fairscheduler) that not one query take all the resources or > that long running queries starve. > > User interfaces: what could help are notebooks (Jupyter etc) but you may > need to train your data scientists. Some may know or prefer other tools. > > On 12. Nov 2017, at 08:32, Deepak Sharma <deepakmc...@gmail.com> wrote: > > I am looking for similar solution more aligned to data scientist group. > The concern i have is about supporting complex aggregations at runtime . > > Thanks > Deepak > > On Nov 12, 2017 12:51, "ashish rawat" <dceash...@gmail.com> wrote: > >> Hello Everyone, >> >> I was trying to understand if anyone here has tried a data warehouse >> solution using S3 and Spark SQL. Out of multiple possible options >> (redshift, presto, hive etc), we were planning to go with Spark SQL, for >> our aggregates and processing requirements. >> >> If anyone has tried it out, would like to understand the following: >> >> 1. Is Spark SQL and UDF, able to handle all the workloads? >> 2. What user interface did you provide for data scientist, data >> engineers and analysts >> 3. What are the challenges in running concurrent queries, by many >> users, over Spark SQL? Considering Spark still does not provide spill to >> disk, in many scenarios, are there frequent query failures when executing >> concurrent queries >> 4. Are there any open source implementations, which provide something >> similar? >> >> >> Regards, >> Ashish >> >