Hi, I am trying to aggregate Spark time-stamped structured stream to get per-device (source) averages for every second of incoming data.
dataset.printSchema(); // see the output below Dataset<Row> ds1 = dataset .withWatermark("timestamp", "1 second") .groupBy( functions.window(dataset.col("timestamp"), "1 second", "1 second"), dataset.col("source")) .agg( functions.avg("D0").as("AVG_D0"), functions.avg("I0").as("AVG_I0")) .orderBy("window"); StreamingQuery query = ds1.writeStream() .outputMode(OutputMode.Append()) .format("console") .option("truncate", "false") .option("numRows", Integer.MAX_VALUE) .start(); query.awaitTermination(); I am using Spark 2.4.6. According to https://spark.apache.org/docs/2.4.6/structured-streaming-programming-guide.html#output-modes https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#output-modes the above construct should work fine. Yet I am getting an exception in the query start(): 11:05:27.282 [main] ERROR my.sparkbench.example.Example - Exception org.apache.spark.sql.AnalysisException: *Append output mode not supported when there are streaming aggregations on streaming DataFrames/DataSets without watermark*;; Sort [window#44 ASC NULLS FIRST], true +- Aggregate [window#71, source#0], [window#71 AS window#44, source#0, avg(D0#12) AS AVG_D0#68, avg(I0#2L) AS AVG_I0#70] +- Filter isnotnull(timestamp#1) +- Project [named_struct(start, precisetimestampconversion(((((CASE WHEN (cast(CEIL((cast((precisetimestampconversion(timestamp#1, TimestampType, LongType) - 0) as double) / cast(1000000 as double))) as double) = (cast((precisetimestampconversion(timestamp#1, TimestampType, LongType) - 0) as double) / cast(1000000 as double))) THEN (CEIL((cast((precisetimestampconversion(timestamp#1, TimestampType, LongType) - 0) as double) / cast(1000000 as double))) + cast(1 as bigint)) ELSE CEIL((cast((precisetimestampconversion(timestamp#1, TimestampType, LongType) - 0) as double) / cast(1000000 as double))) END + cast(0 as bigint)) - cast(1 as bigint)) * 1000000) + 0), LongType, TimestampType), end, precisetimestampconversion((((((CASE WHEN (cast(CEIL((cast((precisetimestampconversion(timestamp#1, TimestampType, LongType) - 0) as double) / cast(1000000 as double))) as double) = (cast((precisetimestampconversion(timestamp#1, TimestampType, LongType) - 0) as double) / cast(1000000 as double))) THEN (CEIL((cast((precisetimestampconversion(timestamp#1, TimestampType, LongType) - 0) as double) / cast(1000000 as double))) + cast(1 as bigint)) ELSE CEIL((cast((precisetimestampconversion(timestamp#1, TimestampType, LongType) - 0) as double) / cast(1000000 as double))) END + cast(0 as bigint)) - cast(1 as bigint)) * 1000000) + 0) + 1000000), LongType, TimestampType)) AS window#71, source#0, timestamp#1-T1000ms, I0#2L, I1#3L, I2#4L, I3#5L, I4#6L, I5#7L, I6#8L, I7#9L, I8#10L, I9#11L, D0#12, D1#13, D2#14, D3#15, D4#16, D5#17, D6#18, D7#19, D8#20, D9#21] +- EventTimeWatermark timestamp#1: timestamp, interval 1 seconds +- StreamingRelationV2 my.sparkbench.datastreamreader.MyStreamingSource@6897a4a, my.sparkbench.datastreamreader.MyStreamingSource, [source#0, timestamp#1, I0#2L, I1#3L, I2#4L, I3#5L, I4#6L, I5#7L, I6#8L, I7#9L, I8#10L, I9#11L, D0#12, D1#13, D2#14, D3#15, D4#16, D5#17, D6#18, D7#19, D8#20, D9#21] at org.apache.spark.sql.catalyst.analysis.UnsupportedOperationChecker$.org$apache$spark$sql$catalyst$analysis$UnsupportedOperationChecker$$throwError(UnsupportedOperationChecker.scala:389) at org.apache.spark.sql.catalyst.analysis.UnsupportedOperationChecker$.checkForStreaming(UnsupportedOperationChecker.scala:111) at org.apache.spark.sql.streaming.StreamingQueryManager.createQuery(StreamingQueryManager.scala:256) at org.apache.spark.sql.streaming.StreamingQueryManager.startQuery(StreamingQueryManager.scala:322) at org.apache.spark.sql.streaming.DataStreamWriter.start(DataStreamWriter.scala:325) at my.sparkbench.example.Example.streamGroupByResult(Example.java:113) at my.sparkbench.example.Example.exec_main(Example.java:76) at my.sparkbench.example.Example.do_main(Example.java:42) at my.sparkbench.example.Example.main(Example.java:34) even though there is a watermark on the stream. Schema printout looks fine: root |-- source: string (nullable = false) |-- timestamp: timestamp (nullable = false) |-- I0: long (nullable = false) |-- I1: long (nullable = false) |-- I2: long (nullable = false) |-- I3: long (nullable = false) |-- I4: long (nullable = false) |-- I5: long (nullable = false) |-- I6: long (nullable = false) |-- I7: long (nullable = false) |-- I8: long (nullable = false) |-- I9: long (nullable = false) |-- D0: double (nullable = false) |-- D1: double (nullable = false) |-- D2: double (nullable = false) |-- D3: double (nullable = false) |-- D4: double (nullable = false) |-- D5: double (nullable = false) |-- D6: double (nullable = false) |-- D7: double (nullable = false) |-- D8: double (nullable = false) |-- D9: double (nullable = false) Actual data looks fine too. If I feed it to dataset.writeStream().format("console").option("truncate", "false").outputMode(OutputMode.Append()).start(); then I am getting output ------------------------------------------- Batch: 0 ------------------------------------------- +--------+---------------------+---+---+---+---+---+---+---+---+---+---+----+----+----+----+----+----+----+----+----+----+ |source |timestamp |I0 |I1 |I2 |I3 |I4 |I5 |I6 |I7 |I8 |I9 |D0 |D1 |D2 |D3 |D4 |D5 |D6 |D7 |D8 |D9 | +--------+---------------------+---+---+---+---+---+---+---+---+---+---+----+----+----+----+----+----+----+----+----+----+ |DEV-0001|1970-01-01 00:01:40 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0| |DEV-0002|1970-01-01 00:01:40 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0| |DEV-0003|1970-01-01 00:01:40 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0| |DEV-0004|1970-01-01 00:01:40 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0| |DEV-0001|1970-01-01 00:01:40.5|10 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0| |DEV-0002|1970-01-01 00:01:40.5|10 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0| |DEV-0003|1970-01-01 00:01:40.5|10 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0| |DEV-0004|1970-01-01 00:01:40.5|10 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0| |DEV-0001|1970-01-01 00:01:41 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0| |DEV-0002|1970-01-01 00:01:41 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0| |DEV-0003|1970-01-01 00:01:41 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0| |DEV-0004|1970-01-01 00:01:41 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0| |DEV-0001|1970-01-01 00:01:41.5|10 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0| |DEV-0002|1970-01-01 00:01:41.5|10 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0| |DEV-0003|1970-01-01 00:01:41.5|10 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0| |DEV-0004|1970-01-01 00:01:41.5|10 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0| |DEV-0001|1970-01-01 00:01:42 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0| |DEV-0002|1970-01-01 00:01:42 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0| |DEV-0003|1970-01-01 00:01:42 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0| |DEV-0004|1970-01-01 00:01:42 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0| +--------+---------------------+---+---+---+---+---+---+---+---+---+---+----+----+----+----+----+----+----+----+----+----+ only showing top 20 rows and then follow-up batches of a similar look. There is no exception if I use COMPLETE output mode, but then old results (from the start of the timeline) are reported in every batch and that’s not what I want. I want only new query result records to be reported. Thus I want the APPEND mode – but it causes an exception. Why is the exception and how can I make it work? Tiny project that isolates the problem is here: https://github.com/oboguev/SparkQuestion Thanks for advice.