Hi, I have encountered a weird and potentially dangerous behaviour of Spark concerning partial overwrites of partitioned data. Not sure if this is a bug or just abstraction leak. I have checked Spark section of Stack Overflow and haven't found any relevant questions or answers.
Full minimal working example provided as attachment. Tested on Databricks runtime 7.3 LTS ML (Spark 3.0.1). Short summary: Write dataframe using partitioning by a column using saveAsTable. Filter out part of the dataframe, change some values (simulates new increment of data) and write again, overwriting a subset of partitions using insertInto. This operation will either fail on schema mismatch or cause data corruption. Reason: on the first write, the ordering of the columns is changed (partition column is placed at the end). On the second write this is not taken into consideration and Spark tries to insert values into the columns based on their order and not on their name. If they have different types this will fail. If not, values will be written to incorrect columns causing data corruption. My question: is this a bug or intended behaviour? Can something be done about it to prevent it? This issue can be avoided by doing a select with schema loaded from the target table. However, when user is not aware this could cause hard to track down errors in data. Best regards, Oldřich Vlašic
# Databricks notebook source import pyspark.sql.functions as F spark.conf.set("spark.sql.sources.partitionOverwriteMode", "dynamic") # COMMAND ---------- print(spark.version) # 3.0.1 # COMMAND ---------- table_name = "insert_into_mve_301" spark.sql("DROP TABLE IF EXISTS insert_into_mve_301") # COMMAND ---------- df_data = ( spark.range(10_000) .withColumnRenamed("id", "x") .crossJoin( spark.range(5).withColumnRenamed("id", "y") ) .withColumn("z", (F.rand() > 0.5).cast("integer")) .repartitionByRange(5, "y") ) # COMMAND ---------- print(df_data.filter(F.col("x") < 5).show()) """ +---+---+---+ | x| y| z| +---+---+---+ | 0| 0| 0| | 1| 0| 0| | 2| 0| 1| | 3| 0| 1| | 4| 0| 0| | 0| 1| 1| | 1| 1| 1| | 2| 1| 1| | 3| 1| 0| | 4| 1| 1| | 0| 2| 1| | 1| 2| 0| | 2| 2| 0| | 3| 2| 0| | 4| 2| 1| | 0| 3| 0| | 1| 3| 1| | 2| 3| 0| | 3| 3| 0| | 4| 3| 0| +---+---+---+ only showing top 20 rows """ # COMMAND ---------- ( df_data .write .mode("overwrite") .partitionBy("y") .format("parquet") # .option("path", "dbfs:/ov_test/foo_01") .saveAsTable(table_name) ) # COMMAND ---------- df_increment = ( df_data.filter(F.col("y") < 2) # rewrite only some partitions .withColumn("z", F.lit(42)) # change value so that we can see it ) print(df_increment.filter(F.col("x") < 5).show()) """ +---+---+---+ | x| y| z| +---+---+---+ | 0| 0| 42| | 1| 0| 42| | 2| 0| 42| | 3| 0| 42| | 4| 0| 42| | 0| 1| 42| | 1| 1| 42| | 2| 1| 42| | 3| 1| 42| | 4| 1| 42| +---+---+---+ """ # COMMAND ---------- ( df_increment .write .mode("overwrite") .insertInto(table_name) ) # COMMAND ---------- print( spark .table(table_name) .filter(F.col("y") == 42) # note that we inserted value 42 to column "z" .limit(10) .show() ) """ +---+---+---+ | x| z| y| +---+---+---+ | 0| 1| 42| | 1| 1| 42| | 2| 1| 42| | 3| 1| 42| | 4| 1| 42| | 5| 1| 42| | 6| 1| 42| | 7| 1| 42| | 8| 1| 42| | 9| 1| 42| +---+---+---+ """
--------------------------------------------------------------------- To unsubscribe e-mail: user-unsubscr...@spark.apache.org