Hi, I’m currently migrating an ETL project to Spark 3.5.0 from 3.2.1 and ran into an issue with some of our queries that read from PostgreSQL databases.
Any attempt to run a Spark SQL query that selects a bpchar without a length specifier from the source DB seems to crash: py4j.protocol.Py4JJavaError: An error occurred while calling o1061.collectToPython. : org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 1 times, most recent failure: Lost task 0.0 in stage 0.0 (TID 0) (192.168.1.48 executor driver): java.lang.OutOfMemoryError: Requested array size exceeds VM limit at org.apache.spark.unsafe.types.UTF8String.rpad(UTF8String.java:880) at org.apache.spark.sql.catalyst.util.CharVarcharCodegenUtils.readSidePadding(CharVarcharCodegenUtils.java:62) at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source) at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) at org.apache.spark.sql.execution.WholeStageCodegenEvaluatorFactory$WholeStageCodegenPartitionEvaluator$$anon$1.hasNext(WholeStageCodegenEvaluatorFactory.scala:43) at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460) at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:140) at org.apache.spark.shuffle.ShuffleWriteProcessor.write(ShuffleWriteProcessor.scala:59) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:104) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:54) at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:161) at org.apache.spark.scheduler.Task.run(Task.scala:141) at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$4(Executor.scala:620) at org.apache.spark.executor.Executor$TaskRunner$$Lambda$2882/0x000000080124d840.apply(Unknown Source) at org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally(SparkErrorUtils.scala:64) at org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally$(SparkErrorUtils.scala:61) at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:94) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:623) at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128) at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628) at java.base/java.lang.Thread.run(Thread.java:829) This appears to be the plan step related to the traceback: staticinvoke(class org.apache.spark.sql.catalyst.util.CharVarcharCodegenUtils, StringType, readSidePadding, bpcharcolumn#7, 2147483647, true, false, true) Reading from a subquery and casting the column to varchar, appears to work around the issue. In PostgreSQL, the bpchar type acts as a variable unlimited length, blank-trimmed string if the length is omitted from the definition. Is this an issue with Spark? I think the column is incorrectly getting interpreted as a char, which behaves the same way as a bpchar(n).