Dear folks,

I'm trying to run a vc-relax job in a TiO2 supercell with 72 atoms (48 O + 24 Ti) including Hubbard's U for both Ti d states and O p states using LDA and US pseudos. I must say that the same job without U's ended normally. Actually I'm using the converged atomic positions and cell parameters as input geometry for the LDA+U job.

I'm trying to run in parallel in different nodes of a cluster, using only MPI in some cases and only openMP (in one node) in some others, the nodes have 8 GB each. I always have the same result: After entering the Hubbard initialization part of the program the job ends without much information about the crash (no CRASH file is created). The final portion of the output is

N of occupied +U levels =  240.000000
 --- exit write_ns ---
 Atomic wfc used for LDA+U Projector are NOT orthogonalized

I attached both the input and the output to this mail. Could it be a memory problem? Any hints to succeed with the job would be welcome.

I'm using 5.2.1 version of QE compiled with gfortran/gcc 4.4.7 under CentOs 6.6, fftw-3.3.4 and openmpi-1.6.5.

Regards,

Reinaldo

Reinaldo Pis Diez
PhD in Chemistry
Principal Researcher - CONICET (Argentina)
Associated Professor - UNLP (Argentina)
Email: pis_diez.at.quimica.unlp.edu.ar
Tel: +54 221 424 0172

     Program PWSCF v.5.2.0 starts on 21Jun2016 at 12:20:22 

     This program is part of the open-source Quantum ESPRESSO suite
     for quantum simulation of materials; please cite
         "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
          URL http://www.quantum-espresso.org";, 
     in publications or presentations arising from this work. More details at
     http://www.quantum-espresso.org/quote

     Parallel version (MPI & OpenMP), running on       8 processor cores
     Number of MPI processes:                 1
     Threads/MPI process:                     8
     Waiting for input...
     Reading input from standard input

     Current dimensions of program PWSCF are:
     Max number of different atomic species (ntypx) = 10
     Max number of k-points (npk) =  40000
     Max angular momentum in pseudopotentials (lmaxx) =  3

     IMPORTANT: XC functional enforced from input :
     Exchange-correlation      = PZ ( 1  1  0  0 0 0)
     Any further DFT definition will be discarded
     Please, verify this is what you really want


     Subspace diagonalization in iterative solution of the eigenvalue problem:
     a serial algorithm will be used

     Found symmetry operation: I + (  0.0000  0.0000  0.3333)
     This is a supercell, fractional translations are disabled

     G-vector sticks info
     --------------------
     sticks:   dense  smooth     PW     G-vecs:    dense   smooth      PW
     Sum       13157    6573   1757              1090945   385637   53329



     bravais-lattice index     =            6
     lattice parameter (alat)  =      17.1703  a.u.
     unit-cell volume          =    4873.8414 (a.u.)^3
     number of atoms/cell      =           72
     number of atomic types    =            2
     number of electrons       =       576.00
     number of Kohn-Sham states=          288
     kinetic-energy cutoff     =      70.0000  Ry
     charge density cutoff     =     560.0000  Ry
     convergence threshold     =      1.0E-06
     mixing beta               =       0.8000
     number of iterations used =            8  plain     mixing
     Exchange-correlation      = PZ ( 1  1  0  0 0 0)
     nstep                     =           50


     celldm(1)=  17.170283  celldm(2)=   0.000000  celldm(3)=   0.962807
     celldm(4)=   0.000000  celldm(5)=   0.000000  celldm(6)=   0.000000

     crystal axes: (cart. coord. in units of alat)
               a(1) = (   1.000000   0.000000   0.000000 )  
               a(2) = (   0.000000   1.000000   0.000000 )  
               a(3) = (   0.000000   0.000000   0.962807 )  

     reciprocal axes: (cart. coord. in units 2 pi/alat)
               b(1) = (  1.000000  0.000000  0.000000 )  
               b(2) = (  0.000000  1.000000  0.000000 )  
               b(3) = (  0.000000  0.000000  1.038630 )  


     PseudoPot. # 1 for Ti read from file:
     ../../Pseudos/Ti.pz-sp-van_ak.UPF
     MD5 check sum: 545d0e6e05332b8871a8093f427cb0ca
     Pseudo is Ultrasoft, Zval = 12.0
     Generated by new atomic code, or converted to UPF format
     Using radial grid of  851 points,  6 beta functions with: 
                l(1) =   0
                l(2) =   0
                l(3) =   1
                l(4) =   1
                l(5) =   2
                l(6) =   2
     Q(r) pseudized with  8 coefficients,  rinner =    1.000   1.000   1.000
                                                       1.000   1.000

     PseudoPot. # 2 for O  read from file:
     ../../Pseudos/O.pz-van_ak.UPF
     MD5 check sum: d814fcb982dd9af4fc6452aae6bb9318
     Pseudo is Ultrasoft, Zval =  6.0
     Generated by new atomic code, or converted to UPF format
     Using radial grid of  737 points,  4 beta functions with: 
                l(1) =   0
                l(2) =   0
                l(3) =   1
                l(4) =   1
     Q(r) pseudized with  8 coefficients,  rinner =    0.800   0.800   0.800


     atomic species   valence    mass     pseudopotential
        Ti            12.00    47.90000     Ti( 1.00)
        O              6.00    16.00000     O ( 1.00)


     Simplified LDA+U calculation (l_max = 2) with parameters (eV):
     atomic species    L          U    alpha       J0     beta
        Ti             2     8.0000   0.0000   0.0000   0.0000
        O              1     7.0000   0.0000   0.0000   0.0000



      8 Sym. Ops., with inversion, found


                                    s                        frac. trans.

      isym =  1     identity                                     

 cryst.   s( 1) = (     1          0          0      )
                  (     0          1          0      )
                  (     0          0          1      )

 cart.    s( 1) = (  1.0000000  0.0000000  0.0000000 )
                  (  0.0000000  1.0000000  0.0000000 )
                  (  0.0000000  0.0000000  1.0000000 )


      isym =  2     180 deg rotation - cart. axis [0,0,1]        

 cryst.   s( 2) = (    -1          0          0      )
                  (     0         -1          0      )
                  (     0          0          1      )

 cart.    s( 2) = ( -1.0000000  0.0000000  0.0000000 )
                  (  0.0000000 -1.0000000  0.0000000 )
                  (  0.0000000  0.0000000  1.0000000 )


      isym =  3     180 deg rotation - cart. axis [1,1,0]        

 cryst.   s( 3) = (     0          1          0      )
                  (     1          0          0      )
                  (     0          0         -1      )

 cart.    s( 3) = (  0.0000000  1.0000000  0.0000000 )
                  (  1.0000000  0.0000000  0.0000000 )
                  (  0.0000000  0.0000000 -1.0000000 )


      isym =  4     180 deg rotation - cart. axis [1,-1,0]       

 cryst.   s( 4) = (     0         -1          0      )
                  (    -1          0          0      )
                  (     0          0         -1      )

 cart.    s( 4) = (  0.0000000 -1.0000000  0.0000000 )
                  ( -1.0000000  0.0000000  0.0000000 )
                  (  0.0000000  0.0000000 -1.0000000 )


      isym =  5     inversion                                    

 cryst.   s( 5) = (    -1          0          0      )
                  (     0         -1          0      )
                  (     0          0         -1      )

 cart.    s( 5) = ( -1.0000000  0.0000000  0.0000000 )
                  (  0.0000000 -1.0000000  0.0000000 )
                  (  0.0000000  0.0000000 -1.0000000 )


      isym =  6     inv. 180 deg rotation - cart. axis [0,0,1]   

 cryst.   s( 6) = (     1          0          0      )
                  (     0          1          0      )
                  (     0          0         -1      )

 cart.    s( 6) = (  1.0000000  0.0000000  0.0000000 )
                  (  0.0000000  1.0000000  0.0000000 )
                  (  0.0000000  0.0000000 -1.0000000 )


      isym =  7     inv. 180 deg rotation - cart. axis [1,1,0]   

 cryst.   s( 7) = (     0         -1          0      )
                  (    -1          0          0      )
                  (     0          0          1      )

 cart.    s( 7) = (  0.0000000 -1.0000000  0.0000000 )
                  ( -1.0000000  0.0000000  0.0000000 )
                  (  0.0000000  0.0000000  1.0000000 )


      isym =  8     inv. 180 deg rotation - cart. axis [1,-1,0]  

 cryst.   s( 8) = (     0          1          0      )
                  (     1          0          0      )
                  (     0          0          1      )

 cart.    s( 8) = (  0.0000000  1.0000000  0.0000000 )
                  (  1.0000000  0.0000000  0.0000000 )
                  (  0.0000000  0.0000000  1.0000000 )


     point group D_2h (mmm) 
     there are  8 classes
     the character table:

       E     C2    C2'   C2''  i     s_v   s_v'  s_v''
A_g    1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00
B_1g   1.00  1.00 -1.00 -1.00  1.00  1.00 -1.00 -1.00
B_2g   1.00 -1.00  1.00 -1.00  1.00 -1.00  1.00 -1.00
B_3g   1.00 -1.00 -1.00  1.00  1.00 -1.00 -1.00  1.00
A_u    1.00  1.00  1.00  1.00 -1.00 -1.00 -1.00 -1.00
B_1u   1.00  1.00 -1.00 -1.00 -1.00 -1.00  1.00  1.00
B_2u   1.00 -1.00  1.00 -1.00 -1.00  1.00 -1.00  1.00
B_3u   1.00 -1.00 -1.00  1.00 -1.00  1.00  1.00 -1.00

     the symmetry operations in each class and the name of the first element:

     E        1
          identity                                               
     C2       2
          180 deg rotation - cart. axis [0,0,1]                  
     C2'      3
          180 deg rotation - cart. axis [1,1,0]                  
     C2''     4
          180 deg rotation - cart. axis [1,-1,0]                 
     i        5
          inversion                                              
     s_v      6
          inv. 180 deg rotation - cart. axis [0,0,1]             
     s_v'     7
          inv. 180 deg rotation - cart. axis [1,1,0]             
     s_v''    8
          inv. 180 deg rotation - cart. axis [1,-1,0]            

   Cartesian axes

     site n.     atom                  positions (alat units)
         1           Ti  tau(   1) = (   0.0000000   0.0000000   0.0000000  )
         2           O   tau(   2) = (   0.1519221   0.1519221  -0.0000000  )
         3           Ti  tau(   3) = (   0.2499997   0.2499997   0.1604675  )
         4           O   tau(   4) = (   0.3480770   0.3480770   0.0000000  )
         5           O   tau(   5) = (   0.0980772   0.4019219   0.1604674  )
         6           O   tau(   6) = (   0.4019219   0.0980772   0.1604674  )
         7           Ti  tau(   7) = (   0.0000000   0.0000000   0.3209354  )
         8           O   tau(   8) = (   0.1519218   0.1519218   0.3209352  )
         9           Ti  tau(   9) = (   0.2499994   0.2499994   0.4814031  )
        10           O   tau(  10) = (   0.3480773   0.3480773   0.3209349  )
        11           O   tau(  11) = (   0.0980775   0.4019216   0.4814031  )
        12           O   tau(  12) = (   0.4019216   0.0980775   0.4814031  )
        13           Ti  tau(  13) = (   0.0000000   0.0000000   0.6418708  )
        14           O   tau(  14) = (   0.1519218   0.1519218   0.6418710  )
        15           Ti  tau(  15) = (   0.2499997   0.2499997   0.8023387  )
        16           O   tau(  16) = (   0.3480773   0.3480773   0.6418713  )
        17           O   tau(  17) = (   0.0980772   0.4019219   0.8023388  )
        18           O   tau(  18) = (   0.4019219   0.0980772   0.8023388  )
        19           Ti  tau(  19) = (   0.0000000   0.4999998   0.0000000  )
        20           O   tau(  20) = (   0.1519224   0.6519222   0.0000000  )
        21           Ti  tau(  21) = (   0.2499993   0.7500004   0.1604675  )
        22           O   tau(  22) = (   0.3480775   0.8480773  -0.0000000  )
        23           O   tau(  23) = (   0.0980775   0.9019222   0.1604673  )
        24           O   tau(  24) = (   0.4019222   0.5980775   0.1604672  )
        25           Ti  tau(  25) = (   0.0000000   0.4999998   0.3209350  )
        26           O   tau(  26) = (   0.1519218   0.6519225   0.3209349  )
        27           Ti  tau(  27) = (   0.2499997   0.7500001   0.4814031  )
        28           O   tau(  28) = (   0.3480772   0.8480779   0.3209349  )
        29           O   tau(  29) = (   0.0980777   0.9019221   0.4814031  )
        30           O   tau(  30) = (   0.4019217   0.5980780   0.4814031  )
        31           Ti  tau(  31) = (   0.0000000   0.4999998   0.6418712  )
        32           O   tau(  32) = (   0.1519218   0.6519225   0.6418713  )
        33           Ti  tau(  33) = (   0.2499993   0.7500004   0.8023387  )
        34           O   tau(  34) = (   0.3480772   0.8480779   0.6418713  )
        35           O   tau(  35) = (   0.0980775   0.9019222   0.8023389  )
        36           O   tau(  36) = (   0.4019222   0.5980775   0.8023390  )
        37           Ti  tau(  37) = (   0.4999998   0.0000000   0.0000000  )
        38           O   tau(  38) = (   0.6519222   0.1519224  -0.0000000  )
        39           Ti  tau(  39) = (   0.7500004   0.2499993   0.1604675  )
        40           O   tau(  40) = (   0.8480773   0.3480775   0.0000000  )
        41           O   tau(  41) = (   0.5980775   0.4019222   0.1604672  )
        42           O   tau(  42) = (   0.9019222   0.0980775   0.1604673  )
        43           Ti  tau(  43) = (   0.4999998   0.0000000   0.3209350  )
        44           O   tau(  44) = (   0.6519225   0.1519218   0.3209349  )
        45           Ti  tau(  45) = (   0.7500001   0.2499997   0.4814031  )
        46           O   tau(  46) = (   0.8480779   0.3480772   0.3209349  )
        47           O   tau(  47) = (   0.5980780   0.4019217   0.4814031  )
        48           O   tau(  48) = (   0.9019221   0.0980777   0.4814031  )
        49           Ti  tau(  49) = (   0.4999998   0.0000000   0.6418712  )
        50           O   tau(  50) = (   0.6519225   0.1519218   0.6418713  )
        51           Ti  tau(  51) = (   0.7500004   0.2499993   0.8023387  )
        52           O   tau(  52) = (   0.8480779   0.3480772   0.6418713  )
        53           O   tau(  53) = (   0.5980775   0.4019222   0.8023390  )
        54           O   tau(  54) = (   0.9019222   0.0980775   0.8023389  )
        55           Ti  tau(  55) = (   0.4999999   0.4999999   0.0000000  )
        56           O   tau(  56) = (   0.6519227   0.6519227   0.0000000  )
        57           Ti  tau(  57) = (   0.7500000   0.7500000   0.1604675  )
        58           O   tau(  58) = (   0.8480776   0.8480776  -0.0000000  )
        59           O   tau(  59) = (   0.5980778   0.9019225   0.1604674  )
        60           O   tau(  60) = (   0.9019225   0.5980778   0.1604674  )
        61           Ti  tau(  61) = (   0.4999999   0.4999999   0.3209347  )
        62           O   tau(  62) = (   0.6519224   0.6519224   0.3209349  )
        63           Ti  tau(  63) = (   0.7500004   0.7500004   0.4814031  )
        64           O   tau(  64) = (   0.8480779   0.8480779   0.3209352  )
        65           O   tau(  65) = (   0.5980781   0.9019223   0.4814031  )
        66           O   tau(  66) = (   0.9019223   0.5980781   0.4814031  )
        67           Ti  tau(  67) = (   0.4999999   0.4999999   0.6418715  )
        68           O   tau(  68) = (   0.6519224   0.6519224   0.6418713  )
        69           Ti  tau(  69) = (   0.7500000   0.7500000   0.8023387  )
        70           O   tau(  70) = (   0.8480779   0.8480779   0.6418710  )
        71           O   tau(  71) = (   0.5980778   0.9019225   0.8023388  )
        72           O   tau(  72) = (   0.9019225   0.5980778   0.8023388  )

   Crystallographic axes

     site n.     atom                  positions (cryst. coord.)
         1           Ti  tau(   1) = (  0.0000000  0.0000000  0.0000000  )
         2           O   tau(   2) = (  0.1519221  0.1519221  0.0000000  )
         3           Ti  tau(   3) = (  0.2499997  0.2499997  0.1666664  )
         4           O   tau(   4) = (  0.3480770  0.3480770  0.0000000  )
         5           O   tau(   5) = (  0.0980772  0.4019219  0.1666663  )
         6           O   tau(   6) = (  0.4019219  0.0980772  0.1666663  )
         7           Ti  tau(   7) = (  0.0000000  0.0000000  0.3333332  )
         8           O   tau(   8) = (  0.1519218  0.1519218  0.3333330  )
         9           Ti  tau(   9) = (  0.2499994  0.2499994  0.4999998  )
        10           O   tau(  10) = (  0.3480773  0.3480773  0.3333327  )
        11           O   tau(  11) = (  0.0980775  0.4019216  0.4999998  )
        12           O   tau(  12) = (  0.4019216  0.0980775  0.4999998  )
        13           Ti  tau(  13) = (  0.0000000  0.0000000  0.6666665  )
        14           O   tau(  14) = (  0.1519218  0.1519218  0.6666666  )
        15           Ti  tau(  15) = (  0.2499997  0.2499997  0.8333333  )
        16           O   tau(  16) = (  0.3480773  0.3480773  0.6666670  )
        17           O   tau(  17) = (  0.0980772  0.4019219  0.8333333  )
        18           O   tau(  18) = (  0.4019219  0.0980772  0.8333333  )
        19           Ti  tau(  19) = (  0.0000000  0.4999998  0.0000000  )
        20           O   tau(  20) = (  0.1519224  0.6519222  0.0000000  )
        21           Ti  tau(  21) = (  0.2499993  0.7500004  0.1666664  )
        22           O   tau(  22) = (  0.3480775  0.8480773  0.0000000  )
        23           O   tau(  23) = (  0.0980775  0.9019222  0.1666662  )
        24           O   tau(  24) = (  0.4019222  0.5980775  0.1666660  )
        25           Ti  tau(  25) = (  0.0000000  0.4999998  0.3333328  )
        26           O   tau(  26) = (  0.1519218  0.6519225  0.3333327  )
        27           Ti  tau(  27) = (  0.2499997  0.7500001  0.4999998  )
        28           O   tau(  28) = (  0.3480772  0.8480779  0.3333327  )
        29           O   tau(  29) = (  0.0980777  0.9019221  0.4999998  )
        30           O   tau(  30) = (  0.4019217  0.5980780  0.4999998  )
        31           Ti  tau(  31) = (  0.0000000  0.4999998  0.6666669  )
        32           O   tau(  32) = (  0.1519218  0.6519225  0.6666669  )
        33           Ti  tau(  33) = (  0.2499993  0.7500004  0.8333332  )
        34           O   tau(  34) = (  0.3480772  0.8480779  0.6666669  )
        35           O   tau(  35) = (  0.0980775  0.9019222  0.8333335  )
        36           O   tau(  36) = (  0.4019222  0.5980775  0.8333336  )
        37           Ti  tau(  37) = (  0.4999998  0.0000000  0.0000000  )
        38           O   tau(  38) = (  0.6519222  0.1519224  0.0000000  )
        39           Ti  tau(  39) = (  0.7500004  0.2499993  0.1666664  )
        40           O   tau(  40) = (  0.8480773  0.3480775  0.0000000  )
        41           O   tau(  41) = (  0.5980775  0.4019222  0.1666660  )
        42           O   tau(  42) = (  0.9019222  0.0980775  0.1666662  )
        43           Ti  tau(  43) = (  0.4999998  0.0000000  0.3333328  )
        44           O   tau(  44) = (  0.6519225  0.1519218  0.3333327  )
        45           Ti  tau(  45) = (  0.7500001  0.2499997  0.4999998  )
        46           O   tau(  46) = (  0.8480779  0.3480772  0.3333327  )
        47           O   tau(  47) = (  0.5980780  0.4019217  0.4999998  )
        48           O   tau(  48) = (  0.9019221  0.0980777  0.4999998  )
        49           Ti  tau(  49) = (  0.4999998  0.0000000  0.6666669  )
        50           O   tau(  50) = (  0.6519225  0.1519218  0.6666669  )
        51           Ti  tau(  51) = (  0.7500004  0.2499993  0.8333332  )
        52           O   tau(  52) = (  0.8480779  0.3480772  0.6666669  )
        53           O   tau(  53) = (  0.5980775  0.4019222  0.8333336  )
        54           O   tau(  54) = (  0.9019222  0.0980775  0.8333335  )
        55           Ti  tau(  55) = (  0.4999999  0.4999999  0.0000000  )
        56           O   tau(  56) = (  0.6519227  0.6519227  0.0000000  )
        57           Ti  tau(  57) = (  0.7500000  0.7500000  0.1666664  )
        58           O   tau(  58) = (  0.8480776  0.8480776  0.0000000  )
        59           O   tau(  59) = (  0.5980778  0.9019225  0.1666663  )
        60           O   tau(  60) = (  0.9019225  0.5980778  0.1666663  )
        61           Ti  tau(  61) = (  0.4999999  0.4999999  0.3333324  )
        62           O   tau(  62) = (  0.6519224  0.6519224  0.3333327  )
        63           Ti  tau(  63) = (  0.7500004  0.7500004  0.4999998  )
        64           O   tau(  64) = (  0.8480779  0.8480779  0.3333330  )
        65           O   tau(  65) = (  0.5980781  0.9019223  0.4999998  )
        66           O   tau(  66) = (  0.9019223  0.5980781  0.4999998  )
        67           Ti  tau(  67) = (  0.4999999  0.4999999  0.6666672  )
        68           O   tau(  68) = (  0.6519224  0.6519224  0.6666670  )
        69           Ti  tau(  69) = (  0.7500000  0.7500000  0.8333333  )
        70           O   tau(  70) = (  0.8480779  0.8480779  0.6666666  )
        71           O   tau(  71) = (  0.5980778  0.9019225  0.8333333  )
        72           O   tau(  72) = (  0.9019225  0.5980778  0.8333333  )

     number of k points=    80
                       cart. coord. in units 2pi/alat
        k(    1) = (   0.0625000   0.0625000   0.0649144), wk =   0.0156250
        k(    2) = (   0.0625000   0.0625000   0.1947432), wk =   0.0156250
        k(    3) = (   0.0625000   0.0625000   0.3245720), wk =   0.0156250
        k(    4) = (   0.0625000   0.0625000   0.4544007), wk =   0.0156250
        k(    5) = (   0.0625000   0.1875000   0.0649144), wk =   0.0312500
        k(    6) = (   0.0625000   0.1875000   0.1947432), wk =   0.0312500
        k(    7) = (   0.0625000   0.1875000   0.3245720), wk =   0.0312500
        k(    8) = (   0.0625000   0.1875000   0.4544007), wk =   0.0312500
        k(    9) = (   0.0625000   0.3125000   0.0649144), wk =   0.0312500
        k(   10) = (   0.0625000   0.3125000   0.1947432), wk =   0.0312500
        k(   11) = (   0.0625000   0.3125000   0.3245720), wk =   0.0312500
        k(   12) = (   0.0625000   0.3125000   0.4544007), wk =   0.0312500
        k(   13) = (   0.0625000   0.4375000   0.0649144), wk =   0.0312500
        k(   14) = (   0.0625000   0.4375000   0.1947432), wk =   0.0312500
        k(   15) = (   0.0625000   0.4375000   0.3245720), wk =   0.0312500
        k(   16) = (   0.0625000   0.4375000   0.4544007), wk =   0.0312500
        k(   17) = (   0.1875000   0.1875000   0.0649144), wk =   0.0156250
        k(   18) = (   0.1875000   0.1875000   0.1947432), wk =   0.0156250
        k(   19) = (   0.1875000   0.1875000   0.3245720), wk =   0.0156250
        k(   20) = (   0.1875000   0.1875000   0.4544007), wk =   0.0156250
        k(   21) = (   0.1875000   0.3125000   0.0649144), wk =   0.0312500
        k(   22) = (   0.1875000   0.3125000   0.1947432), wk =   0.0312500
        k(   23) = (   0.1875000   0.3125000   0.3245720), wk =   0.0312500
        k(   24) = (   0.1875000   0.3125000   0.4544007), wk =   0.0312500
        k(   25) = (   0.1875000   0.4375000   0.0649144), wk =   0.0312500
        k(   26) = (   0.1875000   0.4375000   0.1947432), wk =   0.0312500
        k(   27) = (   0.1875000   0.4375000   0.3245720), wk =   0.0312500
        k(   28) = (   0.1875000   0.4375000   0.4544007), wk =   0.0312500
        k(   29) = (   0.3125000   0.3125000   0.0649144), wk =   0.0156250
        k(   30) = (   0.3125000   0.3125000   0.1947432), wk =   0.0156250
        k(   31) = (   0.3125000   0.3125000   0.3245720), wk =   0.0156250
        k(   32) = (   0.3125000   0.3125000   0.4544007), wk =   0.0156250
        k(   33) = (   0.3125000   0.4375000   0.0649144), wk =   0.0312500
        k(   34) = (   0.3125000   0.4375000   0.1947432), wk =   0.0312500
        k(   35) = (   0.3125000   0.4375000   0.3245720), wk =   0.0312500
        k(   36) = (   0.3125000   0.4375000   0.4544007), wk =   0.0312500
        k(   37) = (   0.4375000   0.4375000   0.0649144), wk =   0.0156250
        k(   38) = (   0.4375000   0.4375000   0.1947432), wk =   0.0156250
        k(   39) = (   0.4375000   0.4375000   0.3245720), wk =   0.0156250
        k(   40) = (   0.4375000   0.4375000   0.4544007), wk =   0.0156250
        k(   41) = (  -0.0625000   0.0625000  -0.0649144), wk =   0.0156250
        k(   42) = (  -0.0625000   0.0625000  -0.1947432), wk =   0.0156250
        k(   43) = (  -0.0625000   0.0625000  -0.3245720), wk =   0.0156250
        k(   44) = (  -0.0625000   0.0625000  -0.4544007), wk =   0.0156250
        k(   45) = (  -0.0625000   0.1875000  -0.0649144), wk =   0.0312500
        k(   46) = (  -0.0625000   0.1875000  -0.1947432), wk =   0.0312500
        k(   47) = (  -0.0625000   0.1875000  -0.3245720), wk =   0.0312500
        k(   48) = (  -0.0625000   0.1875000  -0.4544007), wk =   0.0312500
        k(   49) = (  -0.0625000   0.3125000  -0.0649144), wk =   0.0312500
        k(   50) = (  -0.0625000   0.3125000  -0.1947432), wk =   0.0312500
        k(   51) = (  -0.0625000   0.3125000  -0.3245720), wk =   0.0312500
        k(   52) = (  -0.0625000   0.3125000  -0.4544007), wk =   0.0312500
        k(   53) = (  -0.0625000   0.4375000  -0.0649144), wk =   0.0312500
        k(   54) = (  -0.0625000   0.4375000  -0.1947432), wk =   0.0312500
        k(   55) = (  -0.0625000   0.4375000  -0.3245720), wk =   0.0312500
        k(   56) = (  -0.0625000   0.4375000  -0.4544007), wk =   0.0312500
        k(   57) = (  -0.1875000   0.1875000  -0.0649144), wk =   0.0156250
        k(   58) = (  -0.1875000   0.1875000  -0.1947432), wk =   0.0156250
        k(   59) = (  -0.1875000   0.1875000  -0.3245720), wk =   0.0156250
        k(   60) = (  -0.1875000   0.1875000  -0.4544007), wk =   0.0156250
        k(   61) = (  -0.1875000   0.3125000  -0.0649144), wk =   0.0312500
        k(   62) = (  -0.1875000   0.3125000  -0.1947432), wk =   0.0312500
        k(   63) = (  -0.1875000   0.3125000  -0.3245720), wk =   0.0312500
        k(   64) = (  -0.1875000   0.3125000  -0.4544007), wk =   0.0312500
        k(   65) = (  -0.1875000   0.4375000  -0.0649144), wk =   0.0312500
        k(   66) = (  -0.1875000   0.4375000  -0.1947432), wk =   0.0312500
        k(   67) = (  -0.1875000   0.4375000  -0.3245720), wk =   0.0312500
        k(   68) = (  -0.1875000   0.4375000  -0.4544007), wk =   0.0312500
        k(   69) = (  -0.3125000   0.3125000  -0.0649144), wk =   0.0156250
        k(   70) = (  -0.3125000   0.3125000  -0.1947432), wk =   0.0156250
        k(   71) = (  -0.3125000   0.3125000  -0.3245720), wk =   0.0156250
        k(   72) = (  -0.3125000   0.3125000  -0.4544007), wk =   0.0156250
        k(   73) = (  -0.3125000   0.4375000  -0.0649144), wk =   0.0312500
        k(   74) = (  -0.3125000   0.4375000  -0.1947432), wk =   0.0312500
        k(   75) = (  -0.3125000   0.4375000  -0.3245720), wk =   0.0312500
        k(   76) = (  -0.3125000   0.4375000  -0.4544007), wk =   0.0312500
        k(   77) = (  -0.4375000   0.4375000  -0.0649144), wk =   0.0156250
        k(   78) = (  -0.4375000   0.4375000  -0.1947432), wk =   0.0156250
        k(   79) = (  -0.4375000   0.4375000  -0.3245720), wk =   0.0156250
        k(   80) = (  -0.4375000   0.4375000  -0.4544007), wk =   0.0156250

                       cryst. coord.
        k(    1) = (   0.0625000   0.0625000   0.0625000), wk =   0.0156250
        k(    2) = (   0.0625000   0.0625000   0.1875000), wk =   0.0156250
        k(    3) = (   0.0625000   0.0625000   0.3125000), wk =   0.0156250
        k(    4) = (   0.0625000   0.0625000   0.4375000), wk =   0.0156250
        k(    5) = (   0.0625000   0.1875000   0.0625000), wk =   0.0312500
        k(    6) = (   0.0625000   0.1875000   0.1875000), wk =   0.0312500
        k(    7) = (   0.0625000   0.1875000   0.3125000), wk =   0.0312500
        k(    8) = (   0.0625000   0.1875000   0.4375000), wk =   0.0312500
        k(    9) = (   0.0625000   0.3125000   0.0625000), wk =   0.0312500
        k(   10) = (   0.0625000   0.3125000   0.1875000), wk =   0.0312500
        k(   11) = (   0.0625000   0.3125000   0.3125000), wk =   0.0312500
        k(   12) = (   0.0625000   0.3125000   0.4375000), wk =   0.0312500
        k(   13) = (   0.0625000   0.4375000   0.0625000), wk =   0.0312500
        k(   14) = (   0.0625000   0.4375000   0.1875000), wk =   0.0312500
        k(   15) = (   0.0625000   0.4375000   0.3125000), wk =   0.0312500
        k(   16) = (   0.0625000   0.4375000   0.4375000), wk =   0.0312500
        k(   17) = (   0.1875000   0.1875000   0.0625000), wk =   0.0156250
        k(   18) = (   0.1875000   0.1875000   0.1875000), wk =   0.0156250
        k(   19) = (   0.1875000   0.1875000   0.3125000), wk =   0.0156250
        k(   20) = (   0.1875000   0.1875000   0.4375000), wk =   0.0156250
        k(   21) = (   0.1875000   0.3125000   0.0625000), wk =   0.0312500
        k(   22) = (   0.1875000   0.3125000   0.1875000), wk =   0.0312500
        k(   23) = (   0.1875000   0.3125000   0.3125000), wk =   0.0312500
        k(   24) = (   0.1875000   0.3125000   0.4375000), wk =   0.0312500
        k(   25) = (   0.1875000   0.4375000   0.0625000), wk =   0.0312500
        k(   26) = (   0.1875000   0.4375000   0.1875000), wk =   0.0312500
        k(   27) = (   0.1875000   0.4375000   0.3125000), wk =   0.0312500
        k(   28) = (   0.1875000   0.4375000   0.4375000), wk =   0.0312500
        k(   29) = (   0.3125000   0.3125000   0.0625000), wk =   0.0156250
        k(   30) = (   0.3125000   0.3125000   0.1875000), wk =   0.0156250
        k(   31) = (   0.3125000   0.3125000   0.3125000), wk =   0.0156250
        k(   32) = (   0.3125000   0.3125000   0.4375000), wk =   0.0156250
        k(   33) = (   0.3125000   0.4375000   0.0625000), wk =   0.0312500
        k(   34) = (   0.3125000   0.4375000   0.1875000), wk =   0.0312500
        k(   35) = (   0.3125000   0.4375000   0.3125000), wk =   0.0312500
        k(   36) = (   0.3125000   0.4375000   0.4375000), wk =   0.0312500
        k(   37) = (   0.4375000   0.4375000   0.0625000), wk =   0.0156250
        k(   38) = (   0.4375000   0.4375000   0.1875000), wk =   0.0156250
        k(   39) = (   0.4375000   0.4375000   0.3125000), wk =   0.0156250
        k(   40) = (   0.4375000   0.4375000   0.4375000), wk =   0.0156250
        k(   41) = (  -0.0625000   0.0625000  -0.0625000), wk =   0.0156250
        k(   42) = (  -0.0625000   0.0625000  -0.1875000), wk =   0.0156250
        k(   43) = (  -0.0625000   0.0625000  -0.3125000), wk =   0.0156250
        k(   44) = (  -0.0625000   0.0625000  -0.4375000), wk =   0.0156250
        k(   45) = (  -0.0625000   0.1875000  -0.0625000), wk =   0.0312500
        k(   46) = (  -0.0625000   0.1875000  -0.1875000), wk =   0.0312500
        k(   47) = (  -0.0625000   0.1875000  -0.3125000), wk =   0.0312500
        k(   48) = (  -0.0625000   0.1875000  -0.4375000), wk =   0.0312500
        k(   49) = (  -0.0625000   0.3125000  -0.0625000), wk =   0.0312500
        k(   50) = (  -0.0625000   0.3125000  -0.1875000), wk =   0.0312500
        k(   51) = (  -0.0625000   0.3125000  -0.3125000), wk =   0.0312500
        k(   52) = (  -0.0625000   0.3125000  -0.4375000), wk =   0.0312500
        k(   53) = (  -0.0625000   0.4375000  -0.0625000), wk =   0.0312500
        k(   54) = (  -0.0625000   0.4375000  -0.1875000), wk =   0.0312500
        k(   55) = (  -0.0625000   0.4375000  -0.3125000), wk =   0.0312500
        k(   56) = (  -0.0625000   0.4375000  -0.4375000), wk =   0.0312500
        k(   57) = (  -0.1875000   0.1875000  -0.0625000), wk =   0.0156250
        k(   58) = (  -0.1875000   0.1875000  -0.1875000), wk =   0.0156250
        k(   59) = (  -0.1875000   0.1875000  -0.3125000), wk =   0.0156250
        k(   60) = (  -0.1875000   0.1875000  -0.4375000), wk =   0.0156250
        k(   61) = (  -0.1875000   0.3125000  -0.0625000), wk =   0.0312500
        k(   62) = (  -0.1875000   0.3125000  -0.1875000), wk =   0.0312500
        k(   63) = (  -0.1875000   0.3125000  -0.3125000), wk =   0.0312500
        k(   64) = (  -0.1875000   0.3125000  -0.4375000), wk =   0.0312500
        k(   65) = (  -0.1875000   0.4375000  -0.0625000), wk =   0.0312500
        k(   66) = (  -0.1875000   0.4375000  -0.1875000), wk =   0.0312500
        k(   67) = (  -0.1875000   0.4375000  -0.3125000), wk =   0.0312500
        k(   68) = (  -0.1875000   0.4375000  -0.4375000), wk =   0.0312500
        k(   69) = (  -0.3125000   0.3125000  -0.0625000), wk =   0.0156250
        k(   70) = (  -0.3125000   0.3125000  -0.1875000), wk =   0.0156250
        k(   71) = (  -0.3125000   0.3125000  -0.3125000), wk =   0.0156250
        k(   72) = (  -0.3125000   0.3125000  -0.4375000), wk =   0.0156250
        k(   73) = (  -0.3125000   0.4375000  -0.0625000), wk =   0.0312500
        k(   74) = (  -0.3125000   0.4375000  -0.1875000), wk =   0.0312500
        k(   75) = (  -0.3125000   0.4375000  -0.3125000), wk =   0.0312500
        k(   76) = (  -0.3125000   0.4375000  -0.4375000), wk =   0.0312500
        k(   77) = (  -0.4375000   0.4375000  -0.0625000), wk =   0.0156250
        k(   78) = (  -0.4375000   0.4375000  -0.1875000), wk =   0.0156250
        k(   79) = (  -0.4375000   0.4375000  -0.3125000), wk =   0.0156250
        k(   80) = (  -0.4375000   0.4375000  -0.4375000), wk =   0.0156250

     Dense  grid:  1090945 G-vectors     FFT dimensions: ( 135, 135, 125)

     Smooth grid:   385637 G-vectors     FFT dimensions: (  96,  96,  90)

     Largest allocated arrays     est. size (Mb)     dimensions
        Kohn-Sham Wavefunctions       212.02 Mb     (   48247,  288)
        Atomic Hubbard wavefuncts     194.35 Mb     (   48247,  264)
        NL pseudopotentials           600.73 Mb     (   48247,  816)
        Each V/rho on FFT grid         34.76 Mb     ( 2278125)
        Each G-vector array             8.32 Mb     ( 1090945)
        G-vector shells                 8.32 Mb     ( 1090945)
     Largest temporary arrays     est. size (Mb)     dimensions
        Auxiliary wavefunctions       848.09 Mb     (   48247, 1152)
        Each subspace H/S matrix       20.25 Mb     (    1152, 1152)
        Each <psi_i|beta_j> matrix      3.59 Mb     (     816,  288)
        Arrays for rho mixing         278.09 Mb     ( 2278125,    8)

     Initial potential from superposition of free atoms

     starting charge  551.99904, renormalised to  576.00000
 --- in v_hubbard ---
Hubbard energy   27.7531
 -------
     Number of +U iterations with fixed ns =  0
     Starting occupations:
 --- enter write_ns ---
 LDA+U parameters:
U( 1)     =  8.00000000
alpha( 1) =  0.00000000
U( 2)     =  7.00000000
alpha( 2) =  0.00000000
atom    1   Tr[ns(na)] =   2.00000
    eigenvalues: 
  0.200  0.200  0.200  0.200  0.200
    eigenvectors:
  1.000  0.000  0.000  0.000  0.000
  0.000  1.000  0.000  0.000  0.000
  0.000  0.000  1.000  0.000  0.000
  0.000  0.000  0.000  1.000  0.000
  0.000  0.000  0.000  0.000  1.000
    occupations:
  0.200  0.000  0.000  0.000  0.000
  0.000  0.200  0.000  0.000  0.000
  0.000  0.000  0.200  0.000  0.000
  0.000  0.000  0.000  0.200  0.000
  0.000  0.000  0.000  0.000  0.200
atom    2   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom    3   Tr[ns(na)] =   2.00000
    eigenvalues: 
  0.200  0.200  0.200  0.200  0.200
    eigenvectors:
  1.000  0.000  0.000  0.000  0.000
  0.000  1.000  0.000  0.000  0.000
  0.000  0.000  1.000  0.000  0.000
  0.000  0.000  0.000  1.000  0.000
  0.000  0.000  0.000  0.000  1.000
    occupations:
  0.200  0.000  0.000  0.000  0.000
  0.000  0.200  0.000  0.000  0.000
  0.000  0.000  0.200  0.000  0.000
  0.000  0.000  0.000  0.200  0.000
  0.000  0.000  0.000  0.000  0.200
atom    4   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom    5   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom    6   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom    7   Tr[ns(na)] =   2.00000
    eigenvalues: 
  0.200  0.200  0.200  0.200  0.200
    eigenvectors:
  1.000  0.000  0.000  0.000  0.000
  0.000  1.000  0.000  0.000  0.000
  0.000  0.000  1.000  0.000  0.000
  0.000  0.000  0.000  1.000  0.000
  0.000  0.000  0.000  0.000  1.000
    occupations:
  0.200  0.000  0.000  0.000  0.000
  0.000  0.200  0.000  0.000  0.000
  0.000  0.000  0.200  0.000  0.000
  0.000  0.000  0.000  0.200  0.000
  0.000  0.000  0.000  0.000  0.200
atom    8   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom    9   Tr[ns(na)] =   2.00000
    eigenvalues: 
  0.200  0.200  0.200  0.200  0.200
    eigenvectors:
  1.000  0.000  0.000  0.000  0.000
  0.000  1.000  0.000  0.000  0.000
  0.000  0.000  1.000  0.000  0.000
  0.000  0.000  0.000  1.000  0.000
  0.000  0.000  0.000  0.000  1.000
    occupations:
  0.200  0.000  0.000  0.000  0.000
  0.000  0.200  0.000  0.000  0.000
  0.000  0.000  0.200  0.000  0.000
  0.000  0.000  0.000  0.200  0.000
  0.000  0.000  0.000  0.000  0.200
atom   10   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   11   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   12   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   13   Tr[ns(na)] =   2.00000
    eigenvalues: 
  0.200  0.200  0.200  0.200  0.200
    eigenvectors:
  1.000  0.000  0.000  0.000  0.000
  0.000  1.000  0.000  0.000  0.000
  0.000  0.000  1.000  0.000  0.000
  0.000  0.000  0.000  1.000  0.000
  0.000  0.000  0.000  0.000  1.000
    occupations:
  0.200  0.000  0.000  0.000  0.000
  0.000  0.200  0.000  0.000  0.000
  0.000  0.000  0.200  0.000  0.000
  0.000  0.000  0.000  0.200  0.000
  0.000  0.000  0.000  0.000  0.200
atom   14   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   15   Tr[ns(na)] =   2.00000
    eigenvalues: 
  0.200  0.200  0.200  0.200  0.200
    eigenvectors:
  1.000  0.000  0.000  0.000  0.000
  0.000  1.000  0.000  0.000  0.000
  0.000  0.000  1.000  0.000  0.000
  0.000  0.000  0.000  1.000  0.000
  0.000  0.000  0.000  0.000  1.000
    occupations:
  0.200  0.000  0.000  0.000  0.000
  0.000  0.200  0.000  0.000  0.000
  0.000  0.000  0.200  0.000  0.000
  0.000  0.000  0.000  0.200  0.000
  0.000  0.000  0.000  0.000  0.200
atom   16   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   17   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   18   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   19   Tr[ns(na)] =   2.00000
    eigenvalues: 
  0.200  0.200  0.200  0.200  0.200
    eigenvectors:
  1.000  0.000  0.000  0.000  0.000
  0.000  1.000  0.000  0.000  0.000
  0.000  0.000  1.000  0.000  0.000
  0.000  0.000  0.000  1.000  0.000
  0.000  0.000  0.000  0.000  1.000
    occupations:
  0.200  0.000  0.000  0.000  0.000
  0.000  0.200  0.000  0.000  0.000
  0.000  0.000  0.200  0.000  0.000
  0.000  0.000  0.000  0.200  0.000
  0.000  0.000  0.000  0.000  0.200
atom   20   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   21   Tr[ns(na)] =   2.00000
    eigenvalues: 
  0.200  0.200  0.200  0.200  0.200
    eigenvectors:
  1.000  0.000  0.000  0.000  0.000
  0.000  1.000  0.000  0.000  0.000
  0.000  0.000  1.000  0.000  0.000
  0.000  0.000  0.000  1.000  0.000
  0.000  0.000  0.000  0.000  1.000
    occupations:
  0.200  0.000  0.000  0.000  0.000
  0.000  0.200  0.000  0.000  0.000
  0.000  0.000  0.200  0.000  0.000
  0.000  0.000  0.000  0.200  0.000
  0.000  0.000  0.000  0.000  0.200
atom   22   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   23   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   24   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   25   Tr[ns(na)] =   2.00000
    eigenvalues: 
  0.200  0.200  0.200  0.200  0.200
    eigenvectors:
  1.000  0.000  0.000  0.000  0.000
  0.000  1.000  0.000  0.000  0.000
  0.000  0.000  1.000  0.000  0.000
  0.000  0.000  0.000  1.000  0.000
  0.000  0.000  0.000  0.000  1.000
    occupations:
  0.200  0.000  0.000  0.000  0.000
  0.000  0.200  0.000  0.000  0.000
  0.000  0.000  0.200  0.000  0.000
  0.000  0.000  0.000  0.200  0.000
  0.000  0.000  0.000  0.000  0.200
atom   26   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   27   Tr[ns(na)] =   2.00000
    eigenvalues: 
  0.200  0.200  0.200  0.200  0.200
    eigenvectors:
  1.000  0.000  0.000  0.000  0.000
  0.000  1.000  0.000  0.000  0.000
  0.000  0.000  1.000  0.000  0.000
  0.000  0.000  0.000  1.000  0.000
  0.000  0.000  0.000  0.000  1.000
    occupations:
  0.200  0.000  0.000  0.000  0.000
  0.000  0.200  0.000  0.000  0.000
  0.000  0.000  0.200  0.000  0.000
  0.000  0.000  0.000  0.200  0.000
  0.000  0.000  0.000  0.000  0.200
atom   28   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   29   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   30   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   31   Tr[ns(na)] =   2.00000
    eigenvalues: 
  0.200  0.200  0.200  0.200  0.200
    eigenvectors:
  1.000  0.000  0.000  0.000  0.000
  0.000  1.000  0.000  0.000  0.000
  0.000  0.000  1.000  0.000  0.000
  0.000  0.000  0.000  1.000  0.000
  0.000  0.000  0.000  0.000  1.000
    occupations:
  0.200  0.000  0.000  0.000  0.000
  0.000  0.200  0.000  0.000  0.000
  0.000  0.000  0.200  0.000  0.000
  0.000  0.000  0.000  0.200  0.000
  0.000  0.000  0.000  0.000  0.200
atom   32   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   33   Tr[ns(na)] =   2.00000
    eigenvalues: 
  0.200  0.200  0.200  0.200  0.200
    eigenvectors:
  1.000  0.000  0.000  0.000  0.000
  0.000  1.000  0.000  0.000  0.000
  0.000  0.000  1.000  0.000  0.000
  0.000  0.000  0.000  1.000  0.000
  0.000  0.000  0.000  0.000  1.000
    occupations:
  0.200  0.000  0.000  0.000  0.000
  0.000  0.200  0.000  0.000  0.000
  0.000  0.000  0.200  0.000  0.000
  0.000  0.000  0.000  0.200  0.000
  0.000  0.000  0.000  0.000  0.200
atom   34   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   35   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   36   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   37   Tr[ns(na)] =   2.00000
    eigenvalues: 
  0.200  0.200  0.200  0.200  0.200
    eigenvectors:
  1.000  0.000  0.000  0.000  0.000
  0.000  1.000  0.000  0.000  0.000
  0.000  0.000  1.000  0.000  0.000
  0.000  0.000  0.000  1.000  0.000
  0.000  0.000  0.000  0.000  1.000
    occupations:
  0.200  0.000  0.000  0.000  0.000
  0.000  0.200  0.000  0.000  0.000
  0.000  0.000  0.200  0.000  0.000
  0.000  0.000  0.000  0.200  0.000
  0.000  0.000  0.000  0.000  0.200
atom   38   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   39   Tr[ns(na)] =   2.00000
    eigenvalues: 
  0.200  0.200  0.200  0.200  0.200
    eigenvectors:
  1.000  0.000  0.000  0.000  0.000
  0.000  1.000  0.000  0.000  0.000
  0.000  0.000  1.000  0.000  0.000
  0.000  0.000  0.000  1.000  0.000
  0.000  0.000  0.000  0.000  1.000
    occupations:
  0.200  0.000  0.000  0.000  0.000
  0.000  0.200  0.000  0.000  0.000
  0.000  0.000  0.200  0.000  0.000
  0.000  0.000  0.000  0.200  0.000
  0.000  0.000  0.000  0.000  0.200
atom   40   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   41   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   42   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   43   Tr[ns(na)] =   2.00000
    eigenvalues: 
  0.200  0.200  0.200  0.200  0.200
    eigenvectors:
  1.000  0.000  0.000  0.000  0.000
  0.000  1.000  0.000  0.000  0.000
  0.000  0.000  1.000  0.000  0.000
  0.000  0.000  0.000  1.000  0.000
  0.000  0.000  0.000  0.000  1.000
    occupations:
  0.200  0.000  0.000  0.000  0.000
  0.000  0.200  0.000  0.000  0.000
  0.000  0.000  0.200  0.000  0.000
  0.000  0.000  0.000  0.200  0.000
  0.000  0.000  0.000  0.000  0.200
atom   44   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   45   Tr[ns(na)] =   2.00000
    eigenvalues: 
  0.200  0.200  0.200  0.200  0.200
    eigenvectors:
  1.000  0.000  0.000  0.000  0.000
  0.000  1.000  0.000  0.000  0.000
  0.000  0.000  1.000  0.000  0.000
  0.000  0.000  0.000  1.000  0.000
  0.000  0.000  0.000  0.000  1.000
    occupations:
  0.200  0.000  0.000  0.000  0.000
  0.000  0.200  0.000  0.000  0.000
  0.000  0.000  0.200  0.000  0.000
  0.000  0.000  0.000  0.200  0.000
  0.000  0.000  0.000  0.000  0.200
atom   46   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   47   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   48   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   49   Tr[ns(na)] =   2.00000
    eigenvalues: 
  0.200  0.200  0.200  0.200  0.200
    eigenvectors:
  1.000  0.000  0.000  0.000  0.000
  0.000  1.000  0.000  0.000  0.000
  0.000  0.000  1.000  0.000  0.000
  0.000  0.000  0.000  1.000  0.000
  0.000  0.000  0.000  0.000  1.000
    occupations:
  0.200  0.000  0.000  0.000  0.000
  0.000  0.200  0.000  0.000  0.000
  0.000  0.000  0.200  0.000  0.000
  0.000  0.000  0.000  0.200  0.000
  0.000  0.000  0.000  0.000  0.200
atom   50   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   51   Tr[ns(na)] =   2.00000
    eigenvalues: 
  0.200  0.200  0.200  0.200  0.200
    eigenvectors:
  1.000  0.000  0.000  0.000  0.000
  0.000  1.000  0.000  0.000  0.000
  0.000  0.000  1.000  0.000  0.000
  0.000  0.000  0.000  1.000  0.000
  0.000  0.000  0.000  0.000  1.000
    occupations:
  0.200  0.000  0.000  0.000  0.000
  0.000  0.200  0.000  0.000  0.000
  0.000  0.000  0.200  0.000  0.000
  0.000  0.000  0.000  0.200  0.000
  0.000  0.000  0.000  0.000  0.200
atom   52   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   53   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   54   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   55   Tr[ns(na)] =   2.00000
    eigenvalues: 
  0.200  0.200  0.200  0.200  0.200
    eigenvectors:
  1.000  0.000  0.000  0.000  0.000
  0.000  1.000  0.000  0.000  0.000
  0.000  0.000  1.000  0.000  0.000
  0.000  0.000  0.000  1.000  0.000
  0.000  0.000  0.000  0.000  1.000
    occupations:
  0.200  0.000  0.000  0.000  0.000
  0.000  0.200  0.000  0.000  0.000
  0.000  0.000  0.200  0.000  0.000
  0.000  0.000  0.000  0.200  0.000
  0.000  0.000  0.000  0.000  0.200
atom   56   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   57   Tr[ns(na)] =   2.00000
    eigenvalues: 
  0.200  0.200  0.200  0.200  0.200
    eigenvectors:
  1.000  0.000  0.000  0.000  0.000
  0.000  1.000  0.000  0.000  0.000
  0.000  0.000  1.000  0.000  0.000
  0.000  0.000  0.000  1.000  0.000
  0.000  0.000  0.000  0.000  1.000
    occupations:
  0.200  0.000  0.000  0.000  0.000
  0.000  0.200  0.000  0.000  0.000
  0.000  0.000  0.200  0.000  0.000
  0.000  0.000  0.000  0.200  0.000
  0.000  0.000  0.000  0.000  0.200
atom   58   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   59   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   60   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   61   Tr[ns(na)] =   2.00000
    eigenvalues: 
  0.200  0.200  0.200  0.200  0.200
    eigenvectors:
  1.000  0.000  0.000  0.000  0.000
  0.000  1.000  0.000  0.000  0.000
  0.000  0.000  1.000  0.000  0.000
  0.000  0.000  0.000  1.000  0.000
  0.000  0.000  0.000  0.000  1.000
    occupations:
  0.200  0.000  0.000  0.000  0.000
  0.000  0.200  0.000  0.000  0.000
  0.000  0.000  0.200  0.000  0.000
  0.000  0.000  0.000  0.200  0.000
  0.000  0.000  0.000  0.000  0.200
atom   62   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   63   Tr[ns(na)] =   2.00000
    eigenvalues: 
  0.200  0.200  0.200  0.200  0.200
    eigenvectors:
  1.000  0.000  0.000  0.000  0.000
  0.000  1.000  0.000  0.000  0.000
  0.000  0.000  1.000  0.000  0.000
  0.000  0.000  0.000  1.000  0.000
  0.000  0.000  0.000  0.000  1.000
    occupations:
  0.200  0.000  0.000  0.000  0.000
  0.000  0.200  0.000  0.000  0.000
  0.000  0.000  0.200  0.000  0.000
  0.000  0.000  0.000  0.200  0.000
  0.000  0.000  0.000  0.000  0.200
atom   64   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   65   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   66   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   67   Tr[ns(na)] =   2.00000
    eigenvalues: 
  0.200  0.200  0.200  0.200  0.200
    eigenvectors:
  1.000  0.000  0.000  0.000  0.000
  0.000  1.000  0.000  0.000  0.000
  0.000  0.000  1.000  0.000  0.000
  0.000  0.000  0.000  1.000  0.000
  0.000  0.000  0.000  0.000  1.000
    occupations:
  0.200  0.000  0.000  0.000  0.000
  0.000  0.200  0.000  0.000  0.000
  0.000  0.000  0.200  0.000  0.000
  0.000  0.000  0.000  0.200  0.000
  0.000  0.000  0.000  0.000  0.200
atom   68   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   69   Tr[ns(na)] =   2.00000
    eigenvalues: 
  0.200  0.200  0.200  0.200  0.200
    eigenvectors:
  1.000  0.000  0.000  0.000  0.000
  0.000  1.000  0.000  0.000  0.000
  0.000  0.000  1.000  0.000  0.000
  0.000  0.000  0.000  1.000  0.000
  0.000  0.000  0.000  0.000  1.000
    occupations:
  0.200  0.000  0.000  0.000  0.000
  0.000  0.200  0.000  0.000  0.000
  0.000  0.000  0.200  0.000  0.000
  0.000  0.000  0.000  0.200  0.000
  0.000  0.000  0.000  0.000  0.200
atom   70   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   71   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
atom   72   Tr[ns(na)] =   4.00000
    eigenvalues: 
  0.667  0.667  0.667
    eigenvectors:
  1.000  0.000  0.000
  0.000  1.000  0.000
  0.000  0.000  1.000
    occupations:
  0.667  0.000  0.000
  0.000  0.667  0.000
  0.000  0.000  0.667
N of occupied +U levels =  240.000000
 --- exit write_ns ---
 Atomic wfc used for LDA+U Projector are NOT orthogonalized
&CONTROL
 calculation  = 'vc-relax'
 verbosity    = 'high'
 prefix       = 'TiO2'
 pseudo_dir   = '../../Pseudos'
 outdir       = '/tmp'
 restart_mode = 'from_scratch'
 etot_conv_thr = 1.d-4
 forc_conv_thr = 1.d-3
 tstress       = .true.
/
!****************************************
! tprnfor       = .true.
!****************************************
&SYSTEM
 ibrav        = 6
 celldm(1)    = 17.170283
 celldm(3)    = 0.96280655
 nat          = 72
 ntyp         = 2
 ecutwfc      = 70.D0 
 ecutrho      = 560.D0 
 input_dft    = 'pz'
 lda_plus_u   = .true.
 Hubbard_U(1) = 8.00
 Hubbard_U(2) = 7.00
/
!****************************************
!nspin       = 2
!occupations = 'smearing'
!smearing    = 'gaussian'
!degauss     = 0.01
!starting_magnetization(1) = 0.7
!****************************************
&ELECTRONS
 conv_thr    = 1.D-6
 mixing_beta = 0.80
/
!****************************************
&IONS
 ion_dynamics = 'bfgs'
/
!****************************************
&CELL
 cell_dynamics = 'bfgs'
/
!****************************************
ATOMIC_SPECIES
Ti 47.90 Ti.pz-sp-van_ak.UPF
O  16.00 O.pz-van_ak.UPF
!****************************************
ATOMIC_POSITIONS (angstrom)
Ti       0.000000000   0.000000000   0.000000000
O        1.380382588   1.380382588  -0.000000000
Ti       2.271527913   2.271527913   1.458027019
O        3.162670506   3.162670506   0.000000000
O        0.891141247   3.651911843   1.458026569
O        3.651911843   0.891141247   1.458026569
Ti       0.000000000   0.000000000   2.916057993
O        1.380379774   1.380379774   2.916056474
Ti       2.271524747   2.271524747   4.374087505
O        3.162672846   3.162672846   2.916053494
O        0.891143797   3.651909045   4.374087505
O        3.651909045   0.891143797   4.374087505
Ti       0.000000000   0.000000000   5.832117018
O        1.380379774   1.380379774   5.832118537
Ti       2.271527913   2.271527913   7.290147992
O        3.162672846   3.162672846   5.832121516
O        0.891141247   3.651911843   7.290148442
O        3.651911843   0.891141247   7.290148442
Ti       0.000000380   4.543059531   0.000000000
O        1.380385265   5.923444731   0.000000000
Ti       2.271524207   6.814595614   1.458027435
O        3.162675091   7.705734557  -0.000000000
O        0.891144497   8.194975324   1.458025312
O        3.651914495   5.434205327   1.458024243
Ti       0.000000380   4.543059531   2.916054396
O        1.380380038   5.923447647   2.916053833
Ti       2.271527465   6.814592357   4.374087505
O        3.162672175   7.705739783   2.916053833
O        0.891145571   8.194974250   4.374087505
O        3.651910218   5.434209604   4.374087505
Ti       0.000000380   4.543059531   5.832120615
O        1.380380038   5.923447647   5.832121178
Ti       2.271524207   6.814595614   7.290147575
O        3.162672175   7.705739783   5.832121178
O        0.891144497   8.194975324   7.290149699
O        3.651914495   5.434205327   7.290150768
Ti       4.543059531   0.000000380   0.000000000
O        5.923444731   1.380385265  -0.000000000
Ti       6.814595614   2.271524207   1.458027435
O        7.705734557   3.162675091   0.000000000
O        5.434205327   3.651914495   1.458024243
O        8.194975324   0.891144497   1.458025312
Ti       4.543059531   0.000000380   2.916054396
O        5.923447647   1.380380038   2.916053833
Ti       6.814592357   2.271527465   4.374087505
O        7.705739783   3.162672175   2.916053833
O        5.434209604   3.651910218   4.374087505
O        8.194974250   0.891145571   4.374087505
Ti       4.543059531   0.000000380   5.832120615
O        5.923447647   1.380380038   5.832121178
Ti       6.814595614   2.271524207   7.290147575
O        7.705739783   3.162672175   5.832121178
O        5.434205327   3.651914495   7.290150768
O        8.194975324   0.891144497   7.290149699
Ti       4.543059911   4.543059911   0.000000000
O        5.923449315   5.923449315   0.000000000
Ti       6.814591909   6.814591909   1.458027019
O        7.705737233   7.705737233  -0.000000000
O        5.434207979   8.194978575   1.458026569
O        8.194978575   5.434207979   1.458026569
Ti       4.543059911   4.543059911   2.916051539
O        5.923446976   5.923446976   2.916053494
Ti       6.814595074   6.814595074   4.374087505
O        7.705740048   7.705740048   2.916056474
O        5.434210776   8.194976025   4.374087505
O        8.194976025   5.434210776   4.374087505
Ti       4.543059911   4.543059911   5.832123472
O        5.923446976   5.923446976   5.832121516
Ti       6.814591909   6.814591909   7.290147992
O        7.705740048   7.705740048   5.832118537
O        5.434207979   8.194978575   7.290148442
O        8.194978575   5.434207979   7.290148442
!****************************************
K_POINTS automatic
8 8 8 1 1 1 
!****************************************
_______________________________________________
Pw_forum mailing list
Pw_forum@pwscf.org
http://pwscf.org/mailman/listinfo/pw_forum

Reply via email to