Revision: 5677
Author: floitsc...@gmail.com
Date: Wed Oct 20 08:13:34 2010
Log: Strtod fast-case that uses DiyFps and cached powers of ten.
Review URL: http://codereview.chromium.org/3760013
http://code.google.com/p/v8/source/detail?r=5677
Modified:
/branches/bleeding_edge/src/cached-powers.cc
/branches/bleeding_edge/src/cached-powers.h
/branches/bleeding_edge/src/double.h
/branches/bleeding_edge/src/fast-dtoa.cc
/branches/bleeding_edge/src/strtod.cc
/branches/bleeding_edge/test/cctest/test-strtod.cc
=======================================
--- /branches/bleeding_edge/src/cached-powers.cc Thu Oct 7 06:02:36 2010
+++ /branches/bleeding_edge/src/cached-powers.cc Wed Oct 20 08:13:34 2010
@@ -42,6 +42,11 @@
};
static const CachedPower kCachedPowers[] = {
+ {V8_2PART_UINT64_C(0xfa8fd5a0, 081c0288), -1220, -348},
+ {V8_2PART_UINT64_C(0xbaaee17f, a23ebf76), -1193, -340},
+ {V8_2PART_UINT64_C(0x8b16fb20, 3055ac76), -1166, -332},
+ {V8_2PART_UINT64_C(0xcf42894a, 5dce35ea), -1140, -324},
+ {V8_2PART_UINT64_C(0x9a6bb0aa, 55653b2d), -1113, -316},
{V8_2PART_UINT64_C(0xe61acf03, 3d1a45df), -1087, -308},
{V8_2PART_UINT64_C(0xab70fe17, c79ac6ca), -1060, -300},
{V8_2PART_UINT64_C(0xff77b1fc, bebcdc4f), -1034, -292},
@@ -129,24 +134,44 @@
static const int kCachedPowersLength = ARRAY_SIZE(kCachedPowers);
static const int kCachedPowersOffset = -kCachedPowers[0].decimal_exponent;
static const double kD_1_LOG2_10 = 0.30102999566398114; // 1 / lg(10)
-static const int kCachedPowersDecimalDistance =
+const int PowersOfTenCache::kDecimalExponentDistance =
kCachedPowers[1].decimal_exponent - kCachedPowers[0].decimal_exponent;
-
-void GetCachedPowerForBinaryExponentRange(int min_exponent,
- int max_exponent,
- DiyFp* power,
- int* decimal_exponent) {
- int kQ = DiyFp::kSignificandSize;
- double k = ceiling((min_exponent + kQ - 1) * kD_1_LOG2_10);
- int foo = kCachedPowersOffset;
- int index =
- (foo + static_cast<int>(k) - 1) / kCachedPowersDecimalDistance + 1;
- ASSERT(0 <= index && index < kCachedPowersLength);
- CachedPower cached_power = kCachedPowers[index];
- ASSERT(min_exponent <= cached_power.binary_exponent);
- ASSERT(cached_power.binary_exponent <= max_exponent);
- *decimal_exponent = cached_power.decimal_exponent;
- *power = DiyFp(cached_power.significand, cached_power.binary_exponent);
+const int PowersOfTenCache::kMinDecimalExponent =
+ kCachedPowers[0].decimal_exponent;
+const int PowersOfTenCache::kMaxDecimalExponent =
+ kCachedPowers[kCachedPowersLength - 1].decimal_exponent;
+
+void PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
+ int min_exponent,
+ int max_exponent,
+ DiyFp* power,
+ int* decimal_exponent) {
+ int kQ = DiyFp::kSignificandSize;
+ double k = ceiling((min_exponent + kQ - 1) * kD_1_LOG2_10);
+ int foo = kCachedPowersOffset;
+ int index =
+ (foo + static_cast<int>(k) - 1) / kDecimalExponentDistance + 1;
+ ASSERT(0 <= index && index < kCachedPowersLength);
+ CachedPower cached_power = kCachedPowers[index];
+ ASSERT(min_exponent <= cached_power.binary_exponent);
+ ASSERT(cached_power.binary_exponent <= max_exponent);
+ *decimal_exponent = cached_power.decimal_exponent;
+ *power = DiyFp(cached_power.significand, cached_power.binary_exponent);
+}
+
+
+void PowersOfTenCache::GetCachedPowerForDecimalExponent(int
requested_exponent,
+ DiyFp* power,
+ int*
found_exponent) {
+ ASSERT(kMinDecimalExponent <= requested_exponent);
+ ASSERT(requested_exponent < kMaxDecimalExponent +
kDecimalExponentDistance);
+ int index =
+ (requested_exponent + kCachedPowersOffset) /
kDecimalExponentDistance;
+ CachedPower cached_power = kCachedPowers[index];
+ *power = DiyFp(cached_power.significand, cached_power.binary_exponent);
+ *found_exponent = cached_power.decimal_exponent;
+ ASSERT(*found_exponent <= requested_exponent);
+ ASSERT(requested_exponent < *found_exponent + kDecimalExponentDistance);
}
} } // namespace v8::internal
=======================================
--- /branches/bleeding_edge/src/cached-powers.h Thu Oct 7 06:02:36 2010
+++ /branches/bleeding_edge/src/cached-powers.h Wed Oct 20 08:13:34 2010
@@ -33,10 +33,32 @@
namespace v8 {
namespace internal {
-void GetCachedPowerForBinaryExponentRange(int min_exponent,
- int max_exponent,
- DiyFp* power,
- int* decimal_exponent);
+class PowersOfTenCache {
+ public:
+
+ // Not all powers of ten are cached. The decimal exponent of two
neighboring
+ // cached numbers will differ by kDecimalExponentDistance.
+ static const int kDecimalExponentDistance;
+
+ static const int kMinDecimalExponent;
+ static const int kMaxDecimalExponent;
+
+ // Returns a cached power-of-ten with a binary exponent in the range
+ // [min_exponent; max_exponent] (boundaries included).
+ static void GetCachedPowerForBinaryExponentRange(int min_exponent,
+ int max_exponent,
+ DiyFp* power,
+ int* decimal_exponent);
+
+ // Returns a cached power of ten x ~= 10^k such that
+ // k <= decimal_exponent < k + kCachedPowersDecimalDistance.
+ // The given decimal_exponent must satisfy
+ // kMinDecimalExponent <= requested_exponent, and
+ // requested_exponent < kMaxDecimalExponent + kDecimalExponentDistance.
+ static void GetCachedPowerForDecimalExponent(int requested_exponent,
+ DiyFp* power,
+ int* found_exponent);
+};
} } // namespace v8::internal
=======================================
--- /branches/bleeding_edge/src/double.h Fri Mar 19 05:15:24 2010
+++ /branches/bleeding_edge/src/double.h Wed Oct 20 08:13:34 2010
@@ -45,10 +45,14 @@
static const uint64_t kSignificandMask =
V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF);
static const uint64_t kHiddenBit = V8_2PART_UINT64_C(0x00100000,
00000000);
+ static const int kPhysicalSignificandSize = 52; // Excludes the hidden
bit.
+ static const int kSignificandSize = 53;
Double() : d64_(0) {}
explicit Double(double d) : d64_(double_to_uint64(d)) {}
explicit Double(uint64_t d64) : d64_(d64) {}
+ Double(uint64_t significand, int exponent)
+ : d64_(SignificandExponentToUint64(significand, exponent)) {}
DiyFp AsDiyFp() const {
ASSERT(!IsSpecial());
@@ -67,9 +71,9 @@
f <<= 1;
e--;
}
- // Do the final shifts in one go. Don't forget the hidden bit
(the '-1').
- f <<= DiyFp::kSignificandSize - kSignificandSize - 1;
- e -= DiyFp::kSignificandSize - kSignificandSize - 1;
+ // Do the final shifts in one go.
+ f <<= DiyFp::kSignificandSize - kSignificandSize;
+ e -= DiyFp::kSignificandSize - kSignificandSize;
return DiyFp(f, e);
}
@@ -82,7 +86,8 @@
if (IsDenormal()) return kDenormalExponent;
uint64_t d64 = AsUint64();
- int biased_e = static_cast<int>((d64 & kExponentMask) >>
kSignificandSize);
+ int biased_e =
+ static_cast<int>((d64 & kExponentMask) >>
kPhysicalSignificandSize);
return biased_e - kExponentBias;
}
@@ -155,13 +160,49 @@
}
double value() const { return uint64_to_double(d64_); }
+
+ // Returns the significand size for a given order of magnitude.
+ // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of
magnitude.
+ // This function returns the number of significant binary digits v will
have
+ // once its encoded into a double. In almost all cases this is equal to
+ // kSignificandSize. The only exception are denormals. They start with
leading
+ // zeroes and their effective significand-size is hence smaller.
+ static int SignificandSizeForOrderOfMagnitude(int order) {
+ if (order >= (kDenormalExponent + kSignificandSize)) {
+ return kSignificandSize;
+ }
+ if (order <= kDenormalExponent) return 0;
+ return order - kDenormalExponent;
+ }
private:
- static const int kSignificandSize = 52; // Excludes the hidden bit.
- static const int kExponentBias = 0x3FF + kSignificandSize;
+ static const int kExponentBias = 0x3FF + kPhysicalSignificandSize;
static const int kDenormalExponent = -kExponentBias + 1;
-
- uint64_t d64_;
+ static const int kMaxExponent = 0x7FF - kExponentBias;
+ static const uint64_t kInfinity = V8_2PART_UINT64_C(0x7FF00000,
00000000);
+
+ const uint64_t d64_;
+
+ static uint64_t SignificandExponentToUint64(uint64_t significand,
+ int exponent) {
+ ASSERT(significand <= kSignificandMask + kHiddenBit);
+ ASSERT(((significand & kHiddenBit) != 0) || exponent <=
kDenormalExponent);
+ // Clamp.
+ if (exponent < kDenormalExponent) {
+ return 0;
+ }
+ if (exponent >= kMaxExponent) {
+ return kInfinity;
+ }
+ uint64_t biased_exponent;
+ if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) {
+ biased_exponent = 0;
+ } else {
+ biased_exponent = static_cast<uint64_t>(exponent + kExponentBias);
+ }
+ return (significand & kSignificandMask) |
+ (biased_exponent << kPhysicalSignificandSize);
+ }
};
} } // namespace v8::internal
=======================================
--- /branches/bleeding_edge/src/fast-dtoa.cc Thu Oct 7 06:02:36 2010
+++ /branches/bleeding_edge/src/fast-dtoa.cc Wed Oct 20 08:13:34 2010
@@ -613,9 +613,10 @@
kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
int ten_mk_maximal_binary_exponent =
kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
- GetCachedPowerForBinaryExponentRange(ten_mk_minimal_binary_exponent,
- ten_mk_maximal_binary_exponent,
- &ten_mk, &mk);
+ PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
+ ten_mk_minimal_binary_exponent,
+ ten_mk_maximal_binary_exponent,
+ &ten_mk, &mk);
ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
DiyFp::kSignificandSize) &&
(kMaximalTargetExponent >= w.e() + ten_mk.e() +
@@ -671,9 +672,10 @@
kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
int ten_mk_maximal_binary_exponent =
kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
- GetCachedPowerForBinaryExponentRange(ten_mk_minimal_binary_exponent,
- ten_mk_maximal_binary_exponent,
- &ten_mk, &mk);
+ PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
+ ten_mk_minimal_binary_exponent,
+ ten_mk_maximal_binary_exponent,
+ &ten_mk, &mk);
ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
DiyFp::kSignificandSize) &&
(kMaximalTargetExponent >= w.e() + ten_mk.e() +
=======================================
--- /branches/bleeding_edge/src/strtod.cc Mon Oct 18 09:37:19 2010
+++ /branches/bleeding_edge/src/strtod.cc Wed Oct 20 08:13:34 2010
@@ -31,7 +31,8 @@
#include "v8.h"
#include "strtod.h"
-// #include "cached-powers.h"
+#include "cached-powers.h"
+#include "double.h"
namespace v8 {
namespace internal {
@@ -40,9 +41,9 @@
// Any integer with at most 15 decimal digits will hence fit into a double
// (which has a 53bit significand) without loss of precision.
static const int kMaxExactDoubleIntegerDecimalDigits = 15;
-// 2^64 = 18446744073709551616
-// Any integer with at most 19 digits will hence fit into a 64bit datatype.
+// 2^64 = 18446744073709551616 > 10^19
static const int kMaxUint64DecimalDigits = 19;
+
// Max double: 1.7976931348623157 x 10^308
// Min non-zero double: 4.9406564584124654 x 10^-324
// Any x >= 10^309 is interpreted as +infinity.
@@ -52,6 +53,10 @@
static const int kMaxDecimalPower = 309;
static const int kMinDecimalPower = -324;
+// 2^64 = 18446744073709551616
+static const uint64_t kMaxUint64 = V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF);
+
+
static const double exact_powers_of_ten[] = {
1.0, // 10^0
10.0,
@@ -137,16 +142,48 @@
}
-uint64_t ReadUint64(Vector<const char> buffer) {
- ASSERT(buffer.length() <= kMaxUint64DecimalDigits);
+// Reads digits from the buffer and converts them to a uint64.
+// Reads in as many digits as fit into a uint64.
+// When the string starts with "1844674407370955161" no further digit is
read.
+// Since 2^64 = 18446744073709551616 it would still be possible read
another
+// digit if it was less or equal than 6, but this would complicate the
code.
+static uint64_t ReadUint64(Vector<const char> buffer,
+ int* number_of_read_digits) {
uint64_t result = 0;
- for (int i = 0; i < buffer.length(); ++i) {
- int digit = buffer[i] - '0';
+ int i = 0;
+ while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
+ int digit = buffer[i++] - '0';
ASSERT(0 <= digit && digit <= 9);
result = 10 * result + digit;
}
+ *number_of_read_digits = i;
return result;
}
+
+
+// Reads a DiyFp from the buffer.
+// The returned DiyFp is not necessarily normalized.
+// If remaining_decimals is zero then the returned DiyFp is accurate.
+// Otherwise it has been rounded and has error of at most 1/2 ulp.
+static void ReadDiyFp(Vector<const char> buffer,
+ DiyFp* result,
+ int* remaining_decimals) {
+ int read_digits;
+ uint64_t significand = ReadUint64(buffer, &read_digits);
+ if (buffer.length() == read_digits) {
+ *result = DiyFp(significand, 0);
+ *remaining_decimals = 0;
+ } else {
+ // Round the significand.
+ if (buffer[read_digits] >= '5') {
+ significand++;
+ }
+ // Compute the binary exponent.
+ int exponent = 0;
+ *result = DiyFp(significand, exponent);
+ *remaining_decimals = buffer.length() - read_digits;
+ }
+}
static bool DoubleStrtod(Vector<const char> trimmed,
@@ -162,6 +199,7 @@
return false;
#endif
if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
+ int read_digits;
// The trimmed input fits into a double.
// If the 10^exponent (resp. 10^-exponent) fits into a double too then
we
// can compute the result-double simply by multiplying (resp.
dividing) the
@@ -170,13 +208,15 @@
// return the best possible approximation.
if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
// 10^-exponent fits into a double.
- *result = static_cast<double>(ReadUint64(trimmed));
+ *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
+ ASSERT(read_digits == trimmed.length());
*result /= exact_powers_of_ten[-exponent];
return true;
}
if (0 <= exponent && exponent < kExactPowersOfTenSize) {
// 10^exponent fits into a double.
- *result = static_cast<double>(ReadUint64(trimmed));
+ *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
+ ASSERT(read_digits == trimmed.length());
*result *= exact_powers_of_ten[exponent];
return true;
}
@@ -187,7 +227,8 @@
// The trimmed string was short and we can multiply it with
// 10^remaining_digits. As a result the remaining exponent now fits
// into a double too.
- *result = static_cast<double>(ReadUint64(trimmed));
+ *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
+ ASSERT(read_digits == trimmed.length());
*result *= exact_powers_of_ten[remaining_digits];
*result *= exact_powers_of_ten[exponent - remaining_digits];
return true;
@@ -195,6 +236,145 @@
}
return false;
}
+
+
+// Returns 10^exponent as an exact DiyFp.
+// The given exponent must be in the range [1; kDecimalExponentDistance[.
+static DiyFp AdjustmentPowerOfTen(int exponent) {
+ ASSERT(0 < exponent);
+ ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance);
+ // Simply hardcode the remaining powers for the given decimal exponent
+ // distance.
+ ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8);
+ switch (exponent) {
+ case 1: return DiyFp(V8_2PART_UINT64_C(0xa0000000, 00000000), -60);
+ case 2: return DiyFp(V8_2PART_UINT64_C(0xc8000000, 00000000), -57);
+ case 3: return DiyFp(V8_2PART_UINT64_C(0xfa000000, 00000000), -54);
+ case 4: return DiyFp(V8_2PART_UINT64_C(0x9c400000, 00000000), -50);
+ case 5: return DiyFp(V8_2PART_UINT64_C(0xc3500000, 00000000), -47);
+ case 6: return DiyFp(V8_2PART_UINT64_C(0xf4240000, 00000000), -44);
+ case 7: return DiyFp(V8_2PART_UINT64_C(0x98968000, 00000000), -40);
+ default:
+ UNREACHABLE();
+ return DiyFp(0, 0);
+ }
+}
+
+
+// If the function returns true then the result is the correct double.
+// Otherwise it is either the correct double or the double that is just
below
+// the correct double.
+static bool DiyFpStrtod(Vector<const char> buffer,
+ int exponent,
+ double* result) {
+ DiyFp input;
+ int remaining_decimals;
+ ReadDiyFp(buffer, &input, &remaining_decimals);
+ // Since we may have dropped some digits the input is not accurate.
+ // If remaining_decimals is different than 0 than the error is at most
+ // .5 ulp (unit in the last place).
+ // We don't want to deal with fractions and therefore keep a common
+ // denominator.
+ const int kDenominatorLog = 3;
+ const int kDenominator = 1 << kDenominatorLog;
+ // Move the remaining decimals into the exponent.
+ exponent += remaining_decimals;
+ int error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
+
+ int old_e = input.e();
+ input.Normalize();
+ error <<= old_e - input.e();
+
+ ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent);
+ if (exponent < PowersOfTenCache::kMinDecimalExponent) {
+ *result = 0.0;
+ return true;
+ }
+ DiyFp cached_power;
+ int cached_decimal_exponent;
+ PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
+ &cached_power,
+
&cached_decimal_exponent);
+
+ if (cached_decimal_exponent != exponent) {
+ int adjustment_exponent = exponent - cached_decimal_exponent;
+ DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
+ input.Multiply(adjustment_power);
+ if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
+ // The product of input with the adjustment power fits into a 64 bit
+ // integer.
+ ASSERT(DiyFp::kSignificandSize == 64);
+ } else {
+ // The adjustment power is exact. There is hence only an error of
0.5.
+ error += kDenominator / 2;
+ }
+ }
+
+ input.Multiply(cached_power);
+ // The error introduced by a multiplication of a*b equals
+ // error_a + error_b + error_a*error_b/2^64 + 0.5
+ // Substituting a with 'input' and b with 'cached_power' we have
+ // error_b = 0.5 (all cached powers have an error of less than 0.5
ulp),
+ // error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
+ int error_b = kDenominator / 2;
+ int error_ab = (error == 0 ? 0 : 1); // We round up to 1.
+ int fixed_error = kDenominator / 2;
+ error += error_b + error_ab + fixed_error;
+
+ old_e = input.e();
+ input.Normalize();
+ error <<= old_e - input.e();
+
+ // See if the double's significand changes if we add/subtract the error.
+ int order_of_magnitude = DiyFp::kSignificandSize + input.e();
+ int effective_significand_size =
+ Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
+ int precision_digits_count =
+ DiyFp::kSignificandSize - effective_significand_size;
+ if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize)
{
+ // This can only happen for very small denormals. In this case the
+ // half-way multiplied by the denominator exceeds the range of an
uint64.
+ // Simply shift everything to the right.
+ int shift_amount = (precision_digits_count + kDenominatorLog) -
+ DiyFp::kSignificandSize + 1;
+ input.set_f(input.f() >> shift_amount);
+ input.set_e(input.e() + shift_amount);
+ // We add 1 for the lost precision of error, and kDenominator for
+ // the lost precision of input.f().
+ error = (error >> shift_amount) + 1 + kDenominator;
+ precision_digits_count -= shift_amount;
+ }
+ // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
+ ASSERT(DiyFp::kSignificandSize == 64);
+ ASSERT(precision_digits_count < 64);
+ uint64_t one64 = 1;
+ uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
+ uint64_t precision_bits = input.f() & precision_bits_mask;
+ uint64_t half_way = one64 << (precision_digits_count - 1);
+ precision_bits *= kDenominator;
+ half_way *= kDenominator;
+ // If the last_bits are too close to the half-way case than we are too
+ // inaccurate and round down. In this case we return false so that we can
+ // fall back to a more precise algorithm.
+ uint64_t significand = input.f();
+ if (precision_bits >= half_way + error) {
+ significand = (significand >> precision_digits_count) + 1;
+ exponent = input.e() + precision_digits_count;
+ } else {
+ significand = (significand >> precision_digits_count);
+ exponent = input.e() + precision_digits_count;
+ }
+ Double d = Double(significand, exponent);
+ *result = d.value();
+ if (half_way - error < precision_bits && precision_bits < half_way +
error) {
+ // Too imprecise. The caller will have to fall back to a slower
version.
+ // However the returned number is guaranteed to be either the correct
+ // double, or the next-lower double.
+ return false;
+ } else {
+ return true;
+ }
+}
double Strtod(Vector<const char> buffer, int exponent) {
@@ -204,8 +384,10 @@
if (trimmed.length() == 0) return 0.0;
if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) return
V8_INFINITY;
if (exponent + trimmed.length() <= kMinDecimalPower) return 0.0;
+
double result;
- if (DoubleStrtod(trimmed, exponent, &result)) {
+ if (DoubleStrtod(trimmed, exponent, &result) ||
+ DiyFpStrtod(trimmed, exponent, &result)) {
return result;
}
return old_strtod(trimmed, exponent);
=======================================
--- /branches/bleeding_edge/test/cctest/test-strtod.cc Mon Oct 18 08:19:39
2010
+++ /branches/bleeding_edge/test/cctest/test-strtod.cc Wed Oct 20 08:13:34
2010
@@ -204,4 +204,49 @@
// the floating-point stack is set to 80bits and the double-rounding
// introduces an error.
CHECK_EQ(89255e-22, StrtodChar("89255", -22));
-}
+ CHECK_EQ(104110013277974872254e-225,
+ StrtodChar("104110013277974872254", -225));
+
+ CHECK_EQ(123456789e108, StrtodChar("123456789", 108));
+ CHECK_EQ(123456789e109, StrtodChar("123456789", 109));
+ CHECK_EQ(123456789e110, StrtodChar("123456789", 110));
+ CHECK_EQ(123456789e111, StrtodChar("123456789", 111));
+ CHECK_EQ(123456789e112, StrtodChar("123456789", 112));
+ CHECK_EQ(123456789e113, StrtodChar("123456789", 113));
+ CHECK_EQ(123456789e114, StrtodChar("123456789", 114));
+ CHECK_EQ(123456789e115, StrtodChar("123456789", 115));
+
+ CHECK_EQ(1234567890123456789012345e108,
+ StrtodChar("1234567890123456789012345", 108));
+ CHECK_EQ(1234567890123456789012345e109,
+ StrtodChar("1234567890123456789012345", 109));
+ CHECK_EQ(1234567890123456789012345e110,
+ StrtodChar("1234567890123456789012345", 110));
+ CHECK_EQ(1234567890123456789012345e111,
+ StrtodChar("1234567890123456789012345", 111));
+ CHECK_EQ(1234567890123456789012345e112,
+ StrtodChar("1234567890123456789012345", 112));
+ CHECK_EQ(1234567890123456789012345e113,
+ StrtodChar("1234567890123456789012345", 113));
+ CHECK_EQ(1234567890123456789012345e114,
+ StrtodChar("1234567890123456789012345", 114));
+ CHECK_EQ(1234567890123456789012345e115,
+ StrtodChar("1234567890123456789012345", 115));
+
+ CHECK_EQ(1234567890123456789052345e108,
+ StrtodChar("1234567890123456789052345", 108));
+ CHECK_EQ(1234567890123456789052345e109,
+ StrtodChar("1234567890123456789052345", 109));
+ CHECK_EQ(1234567890123456789052345e110,
+ StrtodChar("1234567890123456789052345", 110));
+ CHECK_EQ(1234567890123456789052345e111,
+ StrtodChar("1234567890123456789052345", 111));
+ CHECK_EQ(1234567890123456789052345e112,
+ StrtodChar("1234567890123456789052345", 112));
+ CHECK_EQ(1234567890123456789052345e113,
+ StrtodChar("1234567890123456789052345", 113));
+ CHECK_EQ(1234567890123456789052345e114,
+ StrtodChar("1234567890123456789052345", 114));
+ CHECK_EQ(1234567890123456789052345e115,
+ StrtodChar("1234567890123456789052345", 115));
+}
--
v8-dev mailing list
v8-dev@googlegroups.com
http://groups.google.com/group/v8-dev