Hi!
Compiling the kernels for opencl takes time. try to measure the second
time you compute something.
On 2017-02-17 17:27, Sensei wrote:
> Hi!
>
> I am new to the OpenCL/GPU world, and I probably expected too much
> from it. I am computing the norm_1 of a vector, on the CPU and GPU,
> and I had these results:
>
> PLATFORM APPLE
> VERSION OPENCL 1.2 (JAN 4 2017 22:35:59)
>
>> DEVICE TYPE CPU
> VERSION OPENCL 1.2 (JAN 4 2017 22:35:59)
>> DEVICE TYPE GPU
> VERSION OPENCL 1.2 (JAN 4 2017 22:35:59)
>
> STARTING, TIMES ARE IN MILLISECONDS
>
> RESERVING CPU VECTOR
> RESERVING CPU VECTOR 16
>
> FILLING CPU VECTOR
> FILLING CPU VECTOR 9
>
> RESERVING GPU VECTOR
> RESERVING GPU VECTOR 82
>
> COPYING TO GPU
> COPYING TO GPU 158310
>
> COMPUTING NORM_1 ON GPU
> COMPUTING NORM_1 ON GPU 333
>
> COMPUTING NORM_1 ON CPU
> COMPUTING NORM_1 ON CPU 8
>
> GPU: 5E+11 CPU: 5.00000E+11
> PROGRAM ENDED WITH EXIT CODE: 0
>
> As you can see, the GPU times are waaaaay higher than the CPU ones. My
> code is really simple, and I am following the recommended conduct to
> build values on the CPU and then copy them.
>
> Is this bad performance due to my platform? I am running on a MacBook
> Pro now. My code follows.
>
> Thanks!
>
> #include <iostream>
> #include <vector>
> #include <algorithm>
> #include <cstdlib>
> #include <numeric>
> #include <chrono>
>
> #define CL_USE_DEPRECATED_OPENCL_1_1_APIS
> #define __CL_ENABLE_EXCEPTIONS
>
> #define VIENNACL_WITH_OPENCL
>
> #include "cl.hpp"
> #include "viennacl/scalar.hpp"
> #include "viennacl/vector.hpp"
> #include "viennacl/ocl/backend.hpp"
> #include "viennacl/linalg/norm_1.hpp"
>
> int main(int argc, const char * argv[])
> {
> // This is what vienna sees
> auto viennaplatforms = viennacl::ocl::get_platforms();
> auto viennadevices = viennacl::ocl::platform().devices();
>
> // See what standard OpenCL sees
> std::vector<cl::Platform> platforms;
>
> // Get platform
> cl::Platform::get(&platforms);
>
> // Temp
> std::string s;
>
> // Where the GPU lies
> cl::Device gpudevice;
>
> // Found a GPU
> bool gpufound = false;
>
> // See if we have a GPU
> for (auto p : platforms)
> {
> s.clear();
> p.getInfo(CL_PLATFORM_NAME, &s);
> std::cout << "Platform " << s << std::endl;
>
> s.clear();
> p.getInfo(CL_PLATFORM_VERSION, &s);
> std::cout << "Version " << s << std::endl;
>
> std::cout << std::endl;
>
> std::vector<cl::Device> devices;
>
> p.getDevices(CL_DEVICE_TYPE_ALL, &devices);
>
> for (auto d : devices)
> {
> std::size_t i = 4;
> d.getInfo(CL_DEVICE_TYPE, &i);
>
> std::cout << "> Device type " <<
> (i & CL_DEVICE_TYPE_CPU ? "CPU" : "") <<
> (i & CL_DEVICE_TYPE_GPU ? "GPU" : "") <<
> (i & CL_DEVICE_TYPE_ACCELERATOR ?
> "ACCELERATOR" : "") <<
> std::endl;
>
> if (i & CL_DEVICE_TYPE_GPU)
> {
> gpudevice = d;
> gpufound = true;
> }
>
> std::cout << "Version " << s << std::endl;
>
> }
> }
>
> if (!gpufound)
> {
> std::cout << "NO GPU FOUND. ABORTING." << std::endl;
> return 1;
> }
>
> // Size
> int size = 1 * 1000 * 1000;
>
> // Measuring time
> auto start = std::chrono::steady_clock::now();
>
> std::cout << std::endl << "STARTING, TIMES ARE IN MILLISECONDS" <<
> std::endl << std::endl;
>
> std::cout << "Reserving CPU vector " << std::endl;
> start = std::chrono::steady_clock::now();
> std::vector<double> cpuv;
> cpuv.resize(size);
> std::cout << "Reserving CPU vector " <<
> std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::steady_clock::now()-start).count()
> << std::endl << std::endl;
>
> std::cout << "Filling CPU vector " << std::endl;
> start = std::chrono::steady_clock::now();
> std::iota(cpuv.begin(), cpuv.end(), 1.0 );
> std::cout << "Filling CPU vector " <<
> std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::steady_clock::now()-start).count()
> << std::endl << std::endl;
>
> std::cout << "Reserving GPU vector " << std::endl;
> start = std::chrono::steady_clock::now();
> viennacl::vector<float> gpuv;
> gpuv.resize(size);
> std::cout << "Reserving GPU vector " <<
> std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::steady_clock::now()-start).count()
> << std::endl << std::endl;
>
> std::cout << "Copying to GPU " << std::endl;
> start = std::chrono::steady_clock::now();
> std::copy(cpuv.begin(), cpuv.end(), gpuv.begin());
> std::cout << "Copying to GPU " <<
> std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::steady_clock::now()-start).count()
> << std::endl << std::endl;
>
> std::cout << "Computing norm_1 on GPU " << std::endl;
> start = std::chrono::steady_clock::now();
> double gpunorm1 = viennacl::linalg::norm_1(gpuv);
> std::cout << "Computing norm_1 on GPU " <<
> std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::steady_clock::now()-start).count()
> << std::endl << std::endl;
>
> std::cout << "Computing norm_1 on CPU " << std::endl;
> start = std::chrono::steady_clock::now();
> double cpunorm1 = std::accumulate(cpuv.begin(), cpuv.end(), 0.0,
> [](double a, double b){ return a
> + std::abs(b); });
> std::cout << "Computing norm_1 on CPU " <<
> std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::steady_clock::now()-start).count()
> << std::endl << std::endl;
>
> std::cout << "GPU: " << gpunorm1 << " CPU: " << cpunorm1 <<
> std::endl;
>
> return 0;
> }
> ------------------------------------------------------------------------------
> Check out the vibrant tech community on one of the world's most
> engaging tech sites, SlashDot.org! http://sdm.link/slashdot
> _______________________________________________
> ViennaCL-devel mailing list
> [email protected]
> https://lists.sourceforge.net/lists/listinfo/viennacl-devel
------------------------------------------------------------------------------
Check out the vibrant tech community on one of the world's most
engaging tech sites, SlashDot.org! http://sdm.link/slashdot
_______________________________________________
ViennaCL-devel mailing list
[email protected]
https://lists.sourceforge.net/lists/listinfo/viennacl-devel