<snip>
The buckybomb combines the unique properties of two classes of
materials: carbon structures and energetic nanomaterials. Carbon
materials such as C60 can be chemically modified fairly easily to
change their properties. Meanwhile, NO2 groups are known to contribute
to detonation and combustion processes because they are a major source
of oxygen. So, the scientists wondered what would happen if NO2 groups
were attached to C60 molecules: would the whole thing explode? And
how?

The simulations answered these questions by revealing the explosion in
step-by-step detail. Starting with an intact buckybomb (technically
called dodecanitrofullerene, or C60(NO2)12), the researchers raised
the simulated temperature to 1000 K (700 °C). Within a picosecond
(10-12 second), the NO2 groups begin to isomerize, rearranging their
atoms and forming new groups with some of the carbon atoms from the
C60. As a few more picoseconds pass, the C60 structure loses some of
its electrons, which interferes with the bonds that hold it together,
and, in a flash, the large molecule disintegrates into many tiny
pieces of diatomic carbon (C2). What's left is a mixture of gases
including CO2, NO2, and N2, as well as C2.

Although this reaction requires an initial heat input to get going,
once it's going it releases an enormous amount of heat for its size.
Within the first picosecond, the temperature increases from 1000 to
2500 K. But at this point the molecule is unstable, so additional
reactions over the next 50 picoseconds raise the temperature to 4000
K. At this temperature, the pressure can reach as high as 1200 MPa
(more than 10,000 times normal atmospheric pressure), depending on the
density of the material.



Read more at: 
http://phys.org/news/2015-03-buckybomb-potential-power-nanoscale-explosives.html

Reply via email to