In WIEN2k you cannot input a bravais matrix directly.
If you really need to do this in such a cell (why at all ????) , you
have to use a "P" cell and give a,b,c (a/sqrt(2)) and alpha,beta,gamma
(as angles between your basis vectors).
In addition you have to transform the positions of As into fractions of
these vectors....
On 10/29/2013 09:13 AM, Gang Li wrote:
Dear all,
As a follow-up question, taking GaAs as an example, if I actually
want to work with an unit cell with the following lattice vectors:
a1 = a*( 0.5, 0.5, 0.0),
a2 = a*(-0.5, 0.5, 0.0),
a3 = a*( 0.0, 0.5, 0.5),
which contains only one Ga and one As atoms in each unit cell, at positions:
Ga = (0.0, 0.0, 0.0),
As = (0.25, -0.25, 0.5),
what should I do then?
This is different from the primitive cell and also only contains
the one Ga and As atoms, thus, it is not possible for me to relabel
atoms to reduce the symmetry. Is there any way to run wien2k with these
unit vectors?
best,
Gang
On Mon, Oct 28, 2013 at 10:29 PM, Gang Li <gangli....@gmail.com
<mailto:gangli....@gmail.com>> wrote:
Dear Oleg
Thank you so much. This is exactly what I want to know. Once a
time, I thought to have wien2k to skip the symmetry analysis,
however, I encountered some other problem originated from doing so.
Your suggestion is much better.
thanks,
Gang
On 28 Oct 2013, at 22:22, Oleg Rubel <oru...@lakeheadu.ca
<mailto:oru...@lakeheadu.ca>> wrote:
> Hello,
>
> here is an example of structure file for GaAs. It has a
zinc-blende structure with 2-atom primitive cell or 8-atom
conventional cell. The key is to label atoms (Ga1, Ga2, etc.) in
order to avoid their recognition as equivalent spices.
>
> Please note that such a structure will have lower symmetry (in
this case just translational symmetry), which will significantly
decrease the computational performance. It is therefore not advised
to do it without a special need.
>
> Oleg
>
> +++++++++++++++++++++++++++++++
> GaAs
> P LATTICE,NONEQUIV.ATOMS: 8 1 P1
> MODE OF CALC=RELA unit=bohr
> 10.841631 10.841631 10.841631 90.000000 90.000000 90.000000
> ATOM -1: X=0.00000000 Y=0.00000000 Z=0.00000000
> MULT= 1 ISPLIT= 8
> Ga1 NPT= 781 R0=0.00005000 RMT= 2.0000 Z: 31.0
> LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
> 0.0000000 1.0000000 0.0000000
> 0.0000000 0.0000000 1.0000000
> ATOM -2: X=0.50000000 Y=0.50000000 Z=0.00000000
> MULT= 1 ISPLIT= 8
> Ga2 NPT= 781 R0=0.00005000 RMT= 2.0000 Z: 31.0
> LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
> 0.0000000 1.0000000 0.0000000
> 0.0000000 0.0000000 1.0000000
> ATOM -3: X=0.50000000 Y=0.00000000 Z=0.50000000
> MULT= 1 ISPLIT= 8
> Ga3 NPT= 781 R0=0.00005000 RMT= 2.0000 Z: 31.0
> LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
> 0.0000000 1.0000000 0.0000000
> 0.0000000 0.0000000 1.0000000
> ATOM -4: X=0.00000000 Y=0.50000000 Z=0.50000000
> MULT= 1 ISPLIT= 8
> Ga4 NPT= 781 R0=0.00005000 RMT= 2.0000 Z: 31.0
> LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
> 0.0000000 1.0000000 0.0000000
> 0.0000000 0.0000000 1.0000000
> ATOM -5: X=0.25000000 Y=0.25000000 Z=0.25000000
> MULT= 1 ISPLIT= 8
> As1 NPT= 781 R0=0.00005000 RMT= 2.0000 Z: 33.0
> LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
> 0.0000000 1.0000000 0.0000000
> 0.0000000 0.0000000 1.0000000
> ATOM -6: X=0.75000000 Y=0.75000000 Z=0.25000000
> MULT= 1 ISPLIT= 8
> As2 NPT= 781 R0=0.00005000 RMT= 2.0000 Z: 33.0
> LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
> 0.0000000 1.0000000 0.0000000
> 0.0000000 0.0000000 1.0000000
> ATOM -7: X=0.75000000 Y=0.25000000 Z=0.75000000
> MULT= 1 ISPLIT= 8
> As3 NPT= 781 R0=0.00005000 RMT= 2.0000 Z: 33.0
> LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
> 0.0000000 1.0000000 0.0000000
> 0.0000000 0.0000000 1.0000000
> ATOM -8: X=0.25000000 Y=0.75000000 Z=0.75000000
> MULT= 1 ISPLIT= 8
> As4 NPT= 781 R0=0.00005000 RMT= 2.0000 Z: 33.0
> LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
> 0.0000000 1.0000000 0.0000000
> 0.0000000 0.0000000 1.0000000
> 1 NUMBER OF SYMMETRY OPERATIONS
> 1 0 0 0.00000000
> 0 1 0 0.00000000
> 0 0 1 0.00000000
> 1
>
> On 28/10/2013 4:06 PM, Gang Li wrote:
>> Dear wien2k experts:
>>
>> I am wondering if it is possible for wien2k to run with
conventional
>> cell instead of primitive cell? If it is, could anyone figure
out to me
>> how this is realized in practice.
>>
>> thanks,
>> Gang
>>
>>
>>
>> _______________________________________________
>> Wien mailing list
>> Wien@zeus.theochem.tuwien.ac.at
<mailto:Wien@zeus.theochem.tuwien.ac.at>
>> http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien
>> SEARCH the MAILING-LIST at:
http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html
>>
>
> --
> Oleg Rubel, PhD
> Scientist, Thunder Bay Regional Research Institute
> Adjunct Professor, Dept Physics, Lakehead University
> 290 Munro St, Thunder Bay, P7A 7T1, Ontario, Canada
> Phone: +1-807-7663350 <tel:%2B1-807-7663350>
> Fax: +1-807-3441948 <tel:%2B1-807-3441948>
> E-mail: oru...@lakeheadu.ca <mailto:oru...@lakeheadu.ca>
> Homepage: http://www.tbrri.com/~orubel/
> _______________________________________________
> Wien mailing list
> Wien@zeus.theochem.tuwien.ac.at
<mailto:Wien@zeus.theochem.tuwien.ac.at>
> http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien
> SEARCH the MAILING-LIST at:
http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html
_______________________________________________
Wien mailing list
Wien@zeus.theochem.tuwien.ac.at
http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien
SEARCH the MAILING-LIST at:
http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html
--
P.Blaha
--------------------------------------------------------------------------
Peter BLAHA, Inst.f. Materials Chemistry, TU Vienna, A-1060 Vienna
Phone: +43-1-58801-165300 FAX: +43-1-58801-165982
Email: bl...@theochem.tuwien.ac.at WWW:
http://info.tuwien.ac.at/theochem/
--------------------------------------------------------------------------
_______________________________________________
Wien mailing list
Wien@zeus.theochem.tuwien.ac.at
http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien
SEARCH the MAILING-LIST at:
http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html