No. Formally, both LDA and GGA do not take into account van der Waals
interactions. vdW interactions are taken into account only with more
adanced functionals:
http://scitation.aip.org/content/aip/journal/jcp/141/7/10.1063/1.4893329

On Mon, 9 Mar 2015, Osama Yassin wrote:

Dear Prof Blaha,

With reference to the paper

Calculation of the lattice constant of solids with semilocal functionals

Philipp Haas, Fabien Tran, and Peter Blaha

PHYSICAL REVIEW B79, 085104 2009

​For layred metal dichalcogenides (e. g. WS2), does it sound correct if the
difference between the lattice constants obtained by LDA and that obtained
GGA ​is equivalent to the lattice contraction due to van der Waals forces?


Osama          
Department of Physics, Faculty of Science
Taibah University, A-Madinah Al-Munawarh, K. Saudi Arabia
A man would do nothing if he waited until he could do it so well that no one
could find fault.​

On Sat, Mar 7, 2015 at 10:24 AM, Peter Blaha <pbl...@theochem.tuwien.ac.at>
wrote:
      There is a misunderstanding: No, don't take a "mean" energy.

      Check also the corresponding charge. When it is large, it is a
      major
      component and needs an energy parameter close to this energy.

                  In case.scf2 you can find under the line
                  :EPH and :EPL
                  the "mean" energy of the P-s states. If
                  they are not close to   -0.73
                  (thats where you expand P-s), change the
                  corresponding input value.


            For P-s, :EPL and :EPH are -1.34 and -0.43, mean of
            -0.89, fairly close to
            -0.73?


      Together with the large P-s charge in :EPL it tells you, that
      you should
      lower the P-s parameter in case.in1 to -1.34
      Whether one sets in addition a second l=0 Eparameter in case.in1
      depends on
      the E-separation between these EPL and EPH values, corresponding
      charges
      and the sphere radii (the larger the spheres: more probably
      yes).
      Here you have 0.9 Ry difference, but presumably the P-s charge
      in the upper E-window is
      very small and you have a very small spheres. Setting the two
      energies to those values might lead to ghostbands and at least
      at the beginning you
      moved one E-parameter up to +6 Ry. As I said previously, you may
      test it at the end
      and set the second Al-s line to 0.30 (no search), so that the
      actual E-parameter will be EF+0.2

            Other than P-s they are not close.  Al-s has -7.24,
            -0.34, mean of -3.79,
            case.in1 has -7.65.
            O-s has -1.21, -0.30, mean is -0.75, while case.in1
            has -1.46.  Similarly
            for Al-p and P-p.


      Again, there should be l=0 E-parameters close to -7.24 and 1.21,
      respectively.
      In addition there should be definitely a second Al-s line at
      0.30, since there are
      "real" Al 3s states in the valence region.

            I had mostly read about a supercell with one full
            core hole.  Some of these
            are certainly cells where I do not want to build a
            larger supercell than I
            have to.  Is the HALF a core hole a better choice?


      Are you interested in XPS or in XAS. This is a VERY different
      process where the
      excited electron leave the bulk or stays whithin the bulk.

      For XPS you are interested just in ONE number (Al-2p
      ionizationpotential) and
      Slaters transition state concept with  half a core hole applies.

      For XAS you want to simulate a spectrum for a system with one
      core hole and an additional e- in
      the valence band. Use (at least for insulators) a full core
      hole.

            Do I understand correctly that whether I use a HALF
            core-hole or a full one,
            I then do minimization of the ionic positions again?


      No. Electronic spectroscopy is a very fast process and the ions
      have no time to move
      around.


            The user-guide says "The energy cut-off specified in
            lstart during init lapw
            (usually -6.0 Ry) defines the separation
            into core- and band-states (the latter contain both,
            semicore and valence)."
            How do I get the Al 2p state into the core?
            Do I have to change the cut-off and use .lcore, or
            is there some way to move
            just the Al 2p state into the core?


      Besides an Energy (-X Ry), you can also specify a charge
      localization criterium
      (like 0.999), which will put all states with less charge inside
      sphere as valence.
      Checkout case.outputst to see how much charge each state has
      inside sphere:
                E-up(Ry)      E-dn(Ry)   Occupancy   q/sphere 
      core-state
        1S      -3.801989     -3.785331  1.00  1.00    0.9922  F
        2S      -0.236724     -0.003329  1.00  0.00    0.0675  F



            PS There was no "reply" button in the archive except
            "Reply via email".  I
            could not find an answer as to how to reply to a
            post in either the Mail
            Archive FAQ, or the WIEN mail archive.

            Thanks,
               David

---------------------------------------------------------------------------

            At Thu, 05 Mar 2015 22:41:38 -0800, Peter Blaha
            wrote
            I think you have solved the problem very well.

            Due to the small P sphere and the fact, that P-s
            states are relatively
            high in energy, the two linearization energies must
            be quite well
            separated. (An alternative would have been to simply
            remove the second
            l=0 line for P and change to "3" lines only:
                0.30    3  0      (GLOBAL E-PARAMETER WITH n
            OTHER CHOICES, global
               1    0.30      0.000 CONT 1
               1   -8.83      0.001 STOP 1
               0   -0.73      0.002 CONT 1

            Two more checks towards the "end of the scf cycle":
            In case.scf2 you can find under the line :EPH and
            :EPL
            the "mean" energy of the P-s states. If they are not
            close to   -0.73
            (thats where you expand P-s), change the
            corresponding input value.

            If the energy of the P-s states has gone down in
            energy at the end of the
            scf-cycles, you may
            checkout if you can go down with this second E-s
            input line from +6 back to
            2.0
            or even
            back to 0.3  (sometimes such problems are
            temporary).

            PS: If you are interested in Al-2p XPS you should do
            Slaters transition
            state !
            Put Al 2p into the core and introduce HALF a core
            hole (compensated by a
            background).
            This gives much better core-eigenvalues that the
            plain DFT groundstate
            eigenvalues,
            typically lt. 1 % error as compared to 10 % error in
            comparison with
            experiment.
            In addition, final state screening effects are
            better accounted for.


            Am 06.03.2015 um 00:44 schrieb David Olmsted:


            Ghostbands: pushed energy range in case.in1 to 6.3,
            does this mean there is
            a problem?

            WIEN2k_14.2 (Release 15/10/2014)
            Quad-Core AMD Opteron(tm) Processor 2378
            Linux cluster
            Intel 11.1 compilers with mkl.

            The purpose of my computation is to compare
            predicted XPS spectra for Al 2p
            electon
            for different environments of the Al atom in the
            Al-P-O-H system.

            User: beginner!  My first time using WEIN2k. 
            Moderate amount of VASP work.

            Issue: ghostbands

            GGA-PBE, 48 atoms, K-mesh 6x6x4, no shift.  Not
            spin-polarized.
            Initial cell and positions from relaxed GGA-PBE
            using VASP, same K-mesh.

            RMT from w2web StructGen (3% reduction)
                H  0.63
                O  1.17
                P  1.34
                Al 1.72

            RKmax 3.5 to get "effective RKmax" of 6.5 for O.

            rmt(min)*kmax =    3.50000
            gmin =   11.11111
            gmax =   20.00000

            ------- metavar_v.in0
            TOT  XC_PBE   
             (XC_LDA,XC_PBESOL,XC_WC,XC_MBJ,XC_REVTPSS)

            NR2V      IFFT      (R2V)
                64 120 108    1.00  1    min IFFT-parameters,
            enhancement factor, iprint
            ---------

            For default -6 Ry cutoff for core states, charge was
            leaking out of RMT
            sphere
            for P 2p states.  Final iteration in
            metavar_v.outputst:
                        14         350
                 14   1.85E-07    1.884765E+00   -8.645384E-01 
             -8.645386E-01   1.72E-07
            -1.67E-08    1.707034E-01    1.707034E-01
                1S      -153.17082     -153.17082
                2S       -12.78682      -12.78682
                2P*       -9.19366       -9.19366
                2P        -9.12626       -9.12626
                3S        -1.02668       -1.02668
                3P*       -0.40735       -0.40735
                3P        -0.40342       -0.40342

            Cutoff set to -9.2 Ry.  (Also tried leaving it at
            -6.0 Ry and touching
            .lcore.  Similar results.)

            ===============================================================
            ---------------------------- Question
            -------------------------
            ===============================================================

            With the original case.in1 file, had messages for
            the P atom, L=0:
            (All these messages are from the first run of
            LAPW2.)

            metavar_v.scf2_1:   QTL-B VALUE .EQ. 4951.54243 in
            Band of energy  -6.46139
            ATOM=    2  L=  0

            increased 0.3 to 2.3 in case.in1, now:

                 QTL-B VALUE .EQ. 1347.97207 in Band of energy 
            -4.71553  ATOM=    2  L=
            0

            increased it 4.3

                 QTL-B VALUE .EQ.  602.53449 in Band of energy 
            -2.14697  ATOM=    2  L=
            0

            When I increased it to 6.3, no complaints.

            The initial scf run has completed with no warnings;
            the position
            minimization is still running.

            In the mailing list search, there are suggestions to
            increase the (upper)
            energy range to
            1.3 or "even 2.0" Ry.  That makes me worry about the
            fact that I had to
            increase it to a much
            larger value.  Does this mean something is going
            wrong?

            -------------------------  End of question
            ------------------------
            =========== case.in1
            =============================================
            WFFIL  EF=.1268392143   (WFFIL, WFPRI, ENFIL, SUPWF)
                3.5       10    4 (R-MT*K-MAX; MAX L IN WF,
            V-NMT
                0.30    4  0      (GLOBAL E-PARAMETER WITH n
            OTHER CHOICES, global
            APW/LAPW)
               0    0.30      0.000 CONT 1
               0   -7.65      0.001 STOP 1
               1    0.30      0.000 CONT 1
               1   -4.81      0.001 STOP 1
                0.30    4  0      (GLOBAL E-PARAMETER WITH n
            OTHER CHOICES, global
            APW/LAPW)
               1    0.30      0.000 CONT 1
               1   -8.83      0.001 STOP 1
               0   -0.73      0.002 CONT 1
               0    6.30      0.000 CONT 1
                0.30    3  0      (GLOBAL E-PARAMETER WITH n
            OTHER CHOICES, global
            APW/LAPW)
               0   -1.46      0.002 CONT 1
               0    0.30      0.000 CONT 1
               1    0.30      0.000 CONT 1
                0.30    3  0      (GLOBAL E-PARAMETER WITH n
            OTHER CHOICES, global
            APW/LAPW)
               0   -1.46      0.002 CONT 1
               0    0.30      0.000 CONT 1
               1    0.30      0.000 CONT 1
                0.30    3  0      (GLOBAL E-PARAMETER WITH n
            OTHER CHOICES, global
            APW/LAPW)
               0   -1.46      0.002 CONT 1
               0    0.30      0.000 CONT 1
               1    0.30      0.000 CONT 1
                0.30    3  0      (GLOBAL E-PARAMETER WITH n
            OTHER CHOICES, global
            APW/LAPW)
               0   -1.46      0.002 CONT 1
               0    0.30      0.000 CONT 1
               1    0.30      0.000 CONT 1
                0.30    3  0      (GLOBAL E-PARAMETER WITH n
            OTHER CHOICES, global
            APW/LAPW)
               0   -1.46      0.002 CONT 1
               0    0.30      0.000 CONT 1
               1    0.30      0.000 CONT 1
                0.30    3  0      (GLOBAL E-PARAMETER WITH n
            OTHER CHOICES, global
            APW/LAPW)
               0   -1.46      0.002 CONT 1
               0    0.30      0.000 CONT 1
               1    0.30      0.000 CONT 1
                0.30    1  0      (GLOBAL E-PARAMETER WITH n
            OTHER CHOICES, global
            APW/LAPW)
               0    0.30      0.000 CONT 1
                0.30    1  0      (GLOBAL E-PARAMETER WITH n
            OTHER CHOICES, global
            APW/LAPW)
               0    0.30      0.000 CONT 1
                0.30    1  0      (GLOBAL E-PARAMETER WITH n
            OTHER CHOICES, global
            APW/LAPW)
               0    0.30      0.000 CONT 1
                0.30    1  0      (GLOBAL E-PARAMETER WITH n
            OTHER CHOICES, global
            APW/LAPW)
               0    0.30      0.000 CONT 1
            K-VECTORS FROM UNIT:4  -12.2       1.5   250   emin
            / de (emax=Ef+de) /
            nband #red

            _______________________________________________
            Wien mailing list
            Wien@zeus.theochem.tuwien.ac.at
            http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien
            SEARCH the MAILING-LIST at: 
            
http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html


      --
      -----------------------------------------
      Peter Blaha
      Inst. Materials Chemistry, TU Vienna
      Getreidemarkt 9, A-1060 Vienna, Austria
      Tel: +43-1-5880115671
      Fax: +43-1-5880115698
      email: pbl...@theochem.tuwien.ac.at
      -----------------------------------------
      _______________________________________________
      Wien mailing list
      Wien@zeus.theochem.tuwien.ac.at
      http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien
      SEARCH the MAILING-LIST at: 
      http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html



_______________________________________________
Wien mailing list
Wien@zeus.theochem.tuwien.ac.at
http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien
SEARCH the MAILING-LIST at:  
http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html

Reply via email to