Hi all,
as promised, this is the design document for the XenSock protocol I
mentioned here:
http://marc.info/?l=xen-devel&m=146520572428581
It is still in its early days but should give you a good idea of how it
looks like and how it is supposed to work. Let me know if you find gaps
in the document and I'll fill them in the next version.
You can find prototypes of the Linux frontend and backend drivers here:
git://git.kernel.org/pub/scm/linux/kernel/git/sstabellini/xen.git xensock-1
To use them, make sure to enable CONFIG_XENSOCK in your kernel config
and add "xensock=1" to the command line of your DomU Linux kernel. You
also need the toolstack to create the initial xenstore nodes for the
protocol. To do that, please apply the attached patch to libxl (the
patch is based on Xen 4.7.0-rc3) and add "xensock=1" to your DomU config
file.
Feel free to try them out! Please be kind, they are only prototypes with
a few known issues :-) But they should work well enough to run simple
tests. If you find something missing, let me know or, even better, write
a patch!
I'll follow up with a separate document to cover the design of my
particular implementation of the protocol.
Cheers,
Stefano
---
# XenSocks Protocol v1
## Rationale
XenSocks is a paravirtualized protocol for the POSIX socket API.
The purpose of XenSocks is to allow the implementation of a specific set
of POSIX calls to be done in a domain other than your own. It allows
connect, accept, bind, release, listen, poll, recvmsg and sendmsg to be
implemented in another domain.
XenSocks provides the following benefits:
* guest networking works out of the box with VPNs, wireless networks and
any other complex configurations on the host
* guest services listen on ports bound directly to the backend domain IP
addresses
* localhost becomes a secure namespace for intra-VMs communications
* full visibility of the guest behavior on the backend domain, allowing
for inexpensive filtering and manipulation of any guest calls
* excellent performance
## Design
### Xenstore
The frontend and the backend connect to each other exchanging information via
xenstore. The toolstack creates front and back nodes with state
XenbusStateInitialising. There can only be one XenSock frontend per domain.
#### Frontend XenBus Nodes
port
Values: <uint32_t>
The identifier of the Xen event channel used to signal activity
in the ring buffer.
ring-ref
Values: <uint32_t>
The Xen grant reference granting permission for the backend to map
the sole page in a single page sized ring buffer.
#### State Machine
**Front** **Back**
XenbusStateInitialising XenbusStateInitialising
- Query virtual device - Query backend device
properties. identification data.
- Setup OS device instance. |
- Allocate and initialize the |
request ring. V
- Publish transport parameters XenbusStateInitWait
that will be in effect during
this connection.
|
|
V
XenbusStateInitialised
- Query frontend transport parameters.
- Connect to the request ring and
event channel.
|
|
V
XenbusStateConnected
- Query backend device properties.
- Finalize OS virtual device
instance.
|
|
V
XenbusStateConnected
Once frontend and backend are connected, they have a shared page, which
will is used to exchange messages over a ring, and an event channel,
which is used to send notifications.
### Commands Ring
The shared ring is used by the frontend to forward socket API calls to the
backend. I'll refer to this ring as **commands ring** to distinguish it from
other rings which will be created later in the lifecycle of the protocol (data
rings). The ring format is defined using the familiar `DEFINE_RING_TYPES` macro
(`xen/include/public/io/ring.h`). Frontend requests are allocated on the ring
using the `RING_GET_REQUEST` macro.
The format is defined as follows:
#define XENSOCK_DATARING_ORDER 6
#define XENSOCK_DATARING_PAGES (1 << XENSOCK_DATARING_ORDER)
#define XENSOCK_DATARING_SIZE (XENSOCK_DATARING_PAGES << PAGE_SHIFT)
#define XENSOCK_CONNECT 0
#define XENSOCK_RELEASE 3
#define XENSOCK_BIND 4
#define XENSOCK_LISTEN 5
#define XENSOCK_ACCEPT 6
#define XENSOCK_POLL 7
struct xen_xensock_request {
uint32_t id; /* private to guest, echoed in response */
uint32_t cmd; /* command to execute */
uint64_t sockid; /* id of the socket */
union {
struct xen_xensock_connect {
uint8_t addr[28];
uint32_t len;
uint32_t flags;
grant_ref_t ref[XENSOCK_DATARING_PAGES];
uint32_t evtchn;
} connect;
struct xen_xensock_bind {
uint8_t addr[28]; /* ipv6 ready */
uint32_t len;
} bind;
struct xen_xensock_accept {
uint64_t sockid;
grant_ref_t ref[XENSOCK_DATARING_PAGES];
uint32_t evtchn;
} accept;
} u;
};
The first three fields are common for every command. Their binary layout
is:
0 4 8 12 16
+-------+-------+-------+-------+
| id | cmd | sockid |
+-------+-------+-------+-------+
- **id** is generated by the frontend and identifies one specific request
- **cmd** is the command requested by the frontend:
- `XENSOCK_CONNECT`: 0
- `XENSOCK_RELEASE`: 3
- `XENSOCK_BIND`: 4
- `XENSOCK_LISTEN`: 5
- `XENSOCK_ACCEPT`: 6
- `XENSOCK_POLL`: 7
- **sockid** is generated by the frontend and identifies the socket to connect,
bind, etc. A new sockid is required on `XENSOCK_CONNECT` and `XENSOCK_BIND`
commands. A new sockid is also required on `XENSOCK_ACCEPT`, for the new
socket.
All three fields are echoed back by the backend.
As for the other Xen ring based protocols, after writing a request to the ring,
the frontend calls `RING_PUSH_REQUESTS_AND_CHECK_NOTIFY` and issues an event
channel notification when a notification is required.
Backend responses are allocated on the ring using the `RING_GET_RESPONSE` macro.
The format is the following:
struct xen_xensock_response {
uint32_t id;
uint32_t cmd;
uint64_t sockid;
int32_t ret;
};
0 4 8 12 16 20
+-------+-------+-------+-------+-------+
| id | cmd | sockid | ret |
+-------+-------+-------+-------+-------+
- **id**: echoed back from request
- **cmd**: echoed back from request
- **sockid**: echoed back from request
- **ret**: return value, identifies success or failure
After calling `RING_PUSH_RESPONSES_AND_CHECK_NOTIFY`, the backend checks whether
it needs to notify the frontend and does so via event channel.
A description of each command, their additional request fields and the
expected responses follow.
#### Connect
The **connect** operation corresponds to the connect system call. It connects a
socket to the specified address. **sockid** is freely chosen by the frontend and
references this specific socket from this point forward.
The connect operation creates a new shared ring, which we'll call **data ring**.
The new ring is used to send and receive data over the connected socket.
Information necessary to setup the new ring, such as grant table references and
event channel ports, are passed from the frontend to the backend as part of
this request. A **data ring** is unmapped and freed upon issuing a **release**
command on the active socket identified by **sockid**.
When the frontend issues a **connect** command, the backend:
- creates a new socket and connects it to **addr**
- creates an internal mapping from **sockid** to its own socket
- maps all the grant references and uses them as shared memory for the new data
ring
- bind the **evtchn**
- replies to the frontend
The data ring format will be described in the following section.
Fields:
- **cmd** value: 0
- additional fields:
- **addr**: address to connect to, in struct sockaddr format
- **len**: address length
- **flags**: flags for the connection, reserved for future usage
- **ref**: grant references of the data ring
- **evtchn**: port number of the evtchn to signal activity on the data ring
Binary layout:
16 20 24 28 32 36 40 44 48
+-------+-------+-------+-------+-------+-------+-------+-------+
| addr | len |
+-------+-------+-------+-------+-------+-------+-------+-------+
| flags |ref[0] |ref[1] |ref[2] |ref[3] |ref[4] |ref[5] |ref[6] |
+-------+-------+-------+-------+-------+-------+-------+-------+
|ref[7] |ref[8] |ref[9] |ref[10]|ref[11]|ref[12]|ref[13]|ref[14]|
+-------+-------+-------+-------+-------+-------+-------+-------+
|ref[15]|ref[16]|ref[17]|ref[18]|ref[19]|ref[20]|ref[21]|ref[22]|
+-------+-------+-------+-------+-------+-------+-------+-------+
|ref[23]|ref[24]|ref[25]|ref[26]|ref[27]|ref[28]|ref[29]|ref[30]|
+-------+-------+-------+-------+-------+-------+-------+-------+
|ref[31]|ref[32]|ref[33]|ref[34]|ref[35]|ref[36]|ref[37]|ref[38]|
+-------+-------+-------+-------+-------+-------+-------+-------+
|ref[39]|ref[40]|ref[41]|ref[42]|ref[43]|ref[44]|ref[45]|ref[46]|
+-------+-------+-------+-------+-------+-------+-------+-------+
|ref[47]|ref[48]|ref[49]|ref[50]|ref[51]|ref[52]|ref[53]|ref[54]|
+-------+-------+-------+-------+-------+-------+-------+-------+
|ref[55]|ref[56]|ref[57]|ref[58]|ref[59]|ref[60]|ref[61]|ref[62]|
+-------+-------+-------+-------+-------+-------+-------+-------+
|ref[63]|evtchn |
+-------+-------+
Return value:
- 0 on success
- less than 0 on failure, see the error codes of the socket system call
#### Release
The **release** operation closes an existing active or a passive socket.
When a release command is issued on a passive socket, the backend releases it
and frees its internal mappings. When a release command is issued for an active
socket, the data ring is also unmapped and freed:
- frontend sends release command for an active socket
- backend releases the socket
- backend unmaps the ring
- backend unbinds the evtchn
- backend replies to frontend
- frontend frees ring and unbinds evtchn
Fields:
- **cmd** value: 3
- additional fields: none
Return value:
- 0 on success
- less than 0 on failure, see the error codes of the shutdown system call
#### Bind
The **bind** operation assigns the address passed as parameter to the socket.
It corresponds to the bind system call. **sockid** is freely chosen by the
frontend and references this specific socket from this point forward. **Bind**,
**listen** and **accept** are the three operations required to have fully
working passive sockets and should be issued in this order.
Fields:
- **cmd** value: 4
- additional fields:
- **addr**: address to bind to, in struct sockaddr format
- **len**: address length
Binary layout:
16 20 24 28 32 36 40 44 48
+-------+-------+-------+-------+-------+-------+-------+-------+
| addr | len |
+-------+-------+-------+-------+-------+-------+-------+-------+
Return value:
- 0 on success
- less than 0 on failure, see the error codes of the bind system call
#### Listen
The **listen** operation marks the socket as a passive socket. It corresponds to
the listen system call.
Fields:
- **cmd** value: 5
- additional fields: none
Return value:
- 0 on success
- less than 0 on failure, see the error codes of the listen system call
#### Accept
The **accept** operation extracts the first connection request on the queue of
pending connections for the listening socket identified by **sockid** and
creates a new connected socket. The **sockid** of the new socket is also chosen
by the frontend and passed as an additional field of the accept request struct.
Similarly to the **connect** operation, **accept** creates a new data ring.
Information necessary to setup the new ring, such as grant table references and
event channel ports, are passed from the frontend to the backend as part of
the request.
The backend will reply to the request only when a new connection is successfully
accepted, i.e. the backend does not return EAGAIN or EWOULDBLOCK.
Example workflow:
- frontend issues an **accept** request
- backend waits for a connection to be available on the socket
- a new connection becomes available
- backend accepts the new connection
- backend creates an internal mapping from **sockid** to the new socket
- backend maps all the grant references and uses them as shared memory for the
new data ring
- backend binds the **evtchn**
- backend replies to the frontend
Fields:
- **cmd** value: 6
- additional fields:
- **sockid**: id of the new socket
- **ref**: grant references of the data ring
- **evtchn**: port number of the evtchn to signal activity on the data ring
Binary layout:
16 20 24 28 32 36 40 44 48
+-------+-------+-------+-------+-------+-------+-------+-------+
| sockid |ref[0] |ref[1] |ref[2] |ref[3] |ref[4] |ref[5] |
+-------+-------+-------+-------+-------+-------+-------+-------+
|ref[6] |ref[7] |ref[8] |ref[9] |ref[10]|ref[11]|ref[12]|ref[13]|
+-------+-------+-------+-------+-------+-------+-------+-------+
|ref[14]|ref[15]|ref[16]|ref[17]|ref[18]|ref[19]|ref[20]|ref[21]|
+-------+-------+-------+-------+-------+-------+-------+-------+
|ref[22]|ref[23]|ref[24]|ref[25]|ref[26]|ref[27]|ref[28]|ref[29]|
+-------+-------+-------+-------+-------+-------+-------+-------+
|ref[30]|ref[31]|ref[32]|ref[33]|ref[34]|ref[35]|ref[36]|ref[37]|
+-------+-------+-------+-------+-------+-------+-------+-------+
|ref[38]|ref[39]|ref[40]|ref[41]|ref[42]|ref[43]|ref[44]|ref[45]|
+-------+-------+-------+-------+-------+-------+-------+-------+
|ref[46]|ref[47]|ref[48]|ref[49]|ref[50]|ref[51]|ref[52]|ref[53]|
+-------+-------+-------+-------+-------+-------+-------+-------+
|ref[54]|ref[55]|ref[56]|ref[57]|ref[58]|ref[59]|ref[60]|ref[61]|
+-------+-------+-------+-------+-------+-------+-------+-------+
|ref[62]|ref[63]|evtchn |
+-------+-------+-------+
Return value:
- 0 on success
- less than 0 on failure, see the error codes of the accept system call
#### Poll
The **poll** operation is only valid for passive sockets. For active sockets,
the frontend should look at the state of the data ring. When a new connection is
available in the queue of the passive socket, the backend generates a response
and notifies the frontend.
Fields:
- **cmd** value: 7
- additional fields: none
Return value:
- 0 on success
- less than 0 on failure, see the error codes of the poll system call
### Data ring
Data rings are used for sending and receiving data over a connected socket. They
are created upon a successful **accept** or **connect** command. The ring works
in a similar way to the existing Xen console ring.
#### Format
#define XENSOCK_DATARING_ORDER 6
#define XENSOCK_DATARING_PAGES (1 << XENSOCK_DATARING_ORDER)
#define XENSOCK_DATARING_SIZE (XENSOCK_DATARING_PAGES << PAGE_SHIFT)
typedef uint32_t XENSOCK_RING_IDX;
struct xensock_ring_intf {
char in[XENSOCK_DATARING_SIZE/4];
char out[XENSOCK_DATARING_SIZE/2];
XENSOCK_RING_IDX in_cons, in_prod;
XENSOCK_RING_IDX out_cons, out_prod;
int32_t in_error, out_error;
};
The design is flexible and can support different ring sizes (at compile time).
The following description is based on order 6 rings, chosen because they provide
excellent performance.
- **in** is an array of 65536 bytes, used as circular buffer
It contains data read from the socket. The producer is the backend, the
consumer is the frontend.
- **out** is an array of 131072 bytes, used as circular buffer
It contains data to be written to the socket. The producer is the frontend,
the consumer is the backend.
- **in_cons** and **in_prod**
Consumer and producer pointers for data read from the socket. They keep track
of how much data has already been consumed by the frontend from the **in**
array. **in_prod** is increased by the backend, after writing data to **in**.
**in_cons** is increased by the frontend, after reading data from **in**.
- **out_cons**, **out_prod**
Consumer and producer pointers for the data to be written to the socket. They
keep track of how much data has been written by the frontend to **out** and
how much data has already been consumed by the backend. **out_prod** is
increased by the frontend, after writing data to **out**. **out_cons** is
increased by the backend, after reading data from **out**.
- **in_error** and **out_error** They signal errors when reading from the socket
(**in_error**) or when writing to the socket (**out_error**). 0 means no
errors. When an error occurs, no further reads or writes operations are
performed on the socket. In the case of an orderly socket shutdown (i.e. read
returns 0) **in_error** is set to -ENOTCONN. **in_error** and **out_error**
are never set to -EAGAIN or -EWOULDBLOCK.
The binary layout follows:
0 65536 196608 196612 196616 196620 196624
196628 196632
+----//----+-------//-------+---------+---------+---------+---------+---------+---------+
| in | out | in_cons | in_prod |out_cons |out_prod
|in_error |out_error|
+----//----+-------//-------+---------+---------+---------+---------+---------+---------+
#### Workflow
The **in** and **out** arrays are used as circular buffers:
0 sizeof(array)
+-----------------------------------+
|to consume| free |to consume |
+-----------------------------------+
^ ^
prod cons
0 sizeof(array)
+-----------------------------------+
| free | to consume | free |
+-----------------------------------+
^ ^
cons prod
The following function is provided to calculate how many bytes are currently
left unconsumed in an array:
#define _MASK_XENSOCK_IDX(idx, ring_size) ((idx) & (ring_size-1))
static inline XENSOCK_RING_IDX xensock_ring_queued(XENSOCK_RING_IDX prod,
XENSOCK_RING_IDX cons,
XENSOCK_RING_IDX ring_size)
{
XENSOCK_RING_IDX size;
if (prod == cons)
return 0;
prod = _MASK_XENSOCK_IDX(prod, ring_size);
cons = _MASK_XENSOCK_IDX(cons, ring_size);
if (prod == cons)
return ring_size;
if (prod > cons)
size = prod - cons;
else {
size = ring_size - cons;
size += prod;
}
return size;
}
The producer (the backend for **in**, the frontend for **out**) writes to the
array in the following way:
- read *cons*, *prod*, *error* from shared memory
- memory barrier
- return on *error*
- write to array at position *prod* up to *cons*, wrapping around the circular
buffer when necessary
- memory barrier
- increase *prod*
- notify the other end via evtchn
The consumer (the backend for **out**, the frontend for **in**) reads from the
array in the following way:
- read *prod*, *cons*, *error* from shared memory
- memory barrier
- return on *error*
- read from array at position *cons* up to *prod*, wrapping around the circular
buffer when necessary
- memory barrier
- increase *cons*
- notify the other end via evtchn
The producer takes care of writing only as many bytes as available in the buffer
up to *cons*. The consumer takes care of reading only as many bytes as available
in the buffer up to *prod*. *error* is set by the backend when an error occurs
writing or reading from the socket.
diff --git a/tools/libxl/libxl.c b/tools/libxl/libxl.c
index c39d745..f4c019d 100644
--- a/tools/libxl/libxl.c
+++ b/tools/libxl/libxl.c
@@ -2299,6 +2299,70 @@ int libxl_devid_to_device_vtpm(libxl_ctx *ctx,
return rc;
}
+/******************************************************************************/
+
+int libxl__device_xensock_setdefault(libxl__gc *gc, libxl_device_xensock
*xensock)
+{
+ int rc;
+
+ rc = libxl__resolve_domid(gc, xensock->backend_domname,
&xensock->backend_domid);
+ return rc;
+}
+
+static int libxl__device_from_xensock(libxl__gc *gc, uint32_t domid,
+ libxl_device_xensock *xensock,
+ libxl__device *device)
+{
+ device->backend_devid = xensock->devid;
+ device->backend_domid = xensock->backend_domid;
+ device->backend_kind = LIBXL__DEVICE_KIND_XENSOCK;
+ device->devid = xensock->devid;
+ device->domid = domid;
+ device->kind = LIBXL__DEVICE_KIND_XENSOCK;
+
+ return 0;
+}
+
+
+int libxl__device_xensock_add(libxl__gc *gc, uint32_t domid,
+ libxl_device_xensock *xensock)
+{
+ flexarray_t *front;
+ flexarray_t *back;
+ libxl__device device;
+ int rc;
+
+ rc = libxl__device_xensock_setdefault(gc, xensock);
+ if (rc) goto out;
+
+ front = flexarray_make(gc, 16, 1);
+ back = flexarray_make(gc, 16, 1);
+
+ if (xensock->devid == -1) {
+ if ((xensock->devid = libxl__device_nextid(gc, domid, "xensock")) < 0)
{
+ rc = ERROR_FAIL;
+ goto out;
+ }
+ }
+
+ rc = libxl__device_from_xensock(gc, domid, xensock, &device);
+ if (rc != 0) goto out;
+
+ flexarray_append_pair(back, "frontend-id", libxl__sprintf(gc, "%d",
domid));
+ flexarray_append_pair(back, "online", "1");
+ flexarray_append_pair(back, "state", GCSPRINTF("%d",
XenbusStateInitialising));
+ flexarray_append_pair(front, "backend-id",
+ libxl__sprintf(gc, "%d", xensock->backend_domid));
+ flexarray_append_pair(front, "state", GCSPRINTF("%d",
XenbusStateInitialising));
+
+ libxl__device_generic_add(gc, XBT_NULL, &device,
+ libxl__xs_kvs_of_flexarray(gc, back,
back->count),
+ libxl__xs_kvs_of_flexarray(gc, front,
front->count),
+ NULL);
+ rc = 0;
+out:
+ return rc;
+}
/******************************************************************************/
@@ -4250,6 +4314,8 @@ out:
* libxl_device_vfb_destroy
* libxl_device_usbctrl_remove
* libxl_device_usbctrl_destroy
+ * libxl_device_xensock_remove
+ * libxl_device_xensock_destroy
*/
#define DEFINE_DEVICE_REMOVE_EXT(type, remtype, removedestroy, f) \
int libxl_device_##type##_##removedestroy(libxl_ctx *ctx, \
@@ -4311,6 +4377,11 @@ DEFINE_DEVICE_REMOVE(vtpm, destroy, 1)
DEFINE_DEVICE_REMOVE_CUSTOM(usbctrl, remove, 0)
DEFINE_DEVICE_REMOVE_CUSTOM(usbctrl, destroy, 1)
+/* xensock */
+
+DEFINE_DEVICE_REMOVE(xensock, remove, 0)
+DEFINE_DEVICE_REMOVE(xensock, destroy, 1)
+
/* channel/console hotunplug is not implemented. There are 2 possibilities:
* 1. add support for secondary consoles to xenconsoled
* 2. dynamically add/remove qemu chardevs via qmp messages. */
diff --git a/tools/libxl/libxl.h b/tools/libxl/libxl.h
index 2c0f868..e36958b 100644
--- a/tools/libxl/libxl.h
+++ b/tools/libxl/libxl.h
@@ -1753,6 +1753,16 @@ int libxl_device_vfb_destroy(libxl_ctx *ctx, uint32_t
domid,
const libxl_asyncop_how *ao_how)
LIBXL_EXTERNAL_CALLERS_ONLY;
+/* xensock */
+int libxl_device_xensock_remove(libxl_ctx *ctx, uint32_t domid,
+ libxl_device_xensock *xensock,
+ const libxl_asyncop_how *ao_how)
+ LIBXL_EXTERNAL_CALLERS_ONLY;
+int libxl_device_xensock_destroy(libxl_ctx *ctx, uint32_t domid,
+ libxl_device_xensock *xensock,
+ const libxl_asyncop_how *ao_how)
+ LIBXL_EXTERNAL_CALLERS_ONLY;
+
/* PCI Passthrough */
int libxl_device_pci_add(libxl_ctx *ctx, uint32_t domid,
libxl_device_pci *pcidev,
diff --git a/tools/libxl/libxl_create.c b/tools/libxl/libxl_create.c
index 5000bd0..9549546 100644
--- a/tools/libxl/libxl_create.c
+++ b/tools/libxl/libxl_create.c
@@ -1374,6 +1374,8 @@ static void domcreate_launch_dm(libxl__egc *egc,
libxl__multidev *multidev,
libxl__device_vfb_add(gc, domid, &d_config->vfbs[i]);
libxl__device_vkb_add(gc, domid, &d_config->vkbs[i]);
}
+ for (i = 0; i < d_config->num_xensocks; i++)
+ libxl__device_xensock_add(gc, domid, &d_config->xensocks[i]);
init_console_info(gc, &console, 0);
console.backend_domid = state->console_domid;
diff --git a/tools/libxl/libxl_internal.h b/tools/libxl/libxl_internal.h
index c791418..2cad021 100644
--- a/tools/libxl/libxl_internal.h
+++ b/tools/libxl/libxl_internal.h
@@ -1224,6 +1224,7 @@ _hidden int libxl__device_vkb_setdefault(libxl__gc *gc,
libxl_device_vkb *vkb);
_hidden int libxl__device_pci_setdefault(libxl__gc *gc, libxl_device_pci *pci);
_hidden void libxl__rdm_setdefault(libxl__gc *gc,
libxl_domain_build_info *b_info);
+_hidden int libxl__device_xensock_setdefault(libxl__gc *gc,
libxl_device_xensock *xensock);
_hidden const char *libxl__device_nic_devname(libxl__gc *gc,
uint32_t domid,
@@ -2647,6 +2648,10 @@ _hidden int libxl__device_vkb_add(libxl__gc *gc,
uint32_t domid,
_hidden int libxl__device_vfb_add(libxl__gc *gc, uint32_t domid,
libxl_device_vfb *vfb);
+/* Internal function to connect a xensock device */
+_hidden int libxl__device_xensock_add(libxl__gc *gc, uint32_t domid,
+ libxl_device_xensock *xensock);
+
/* Waits for the passed device to reach state XenbusStateInitWait.
* This is not really useful by itself, but is important when executing
* hotplug scripts, since we need to be sure the device is in the correct
diff --git a/tools/libxl/libxl_types.idl b/tools/libxl/libxl_types.idl
index 9840f3b..6e15766 100644
--- a/tools/libxl/libxl_types.idl
+++ b/tools/libxl/libxl_types.idl
@@ -685,6 +685,12 @@ libxl_device_vtpm = Struct("device_vtpm", [
("uuid", libxl_uuid),
])
+libxl_device_xensock = Struct("device_xensock", [
+ ("backend_domid", libxl_domid),
+ ("backend_domname", string),
+ ("devid", libxl_devid),
+])
+
libxl_device_channel = Struct("device_channel", [
("backend_domid", libxl_domid),
("backend_domname", string),
@@ -709,6 +715,7 @@ libxl_domain_config = Struct("domain_config", [
("vfbs", Array(libxl_device_vfb, "num_vfbs")),
("vkbs", Array(libxl_device_vkb, "num_vkbs")),
("vtpms", Array(libxl_device_vtpm, "num_vtpms")),
+ ("xensocks", Array(libxl_device_xensock, "num_xensocks")),
# a channel manifests as a console with a name,
# see docs/misc/channels.txt
("channels", Array(libxl_device_channel, "num_channels")),
diff --git a/tools/libxl/libxl_types_internal.idl
b/tools/libxl/libxl_types_internal.idl
index 177f9b7..4293b22 100644
--- a/tools/libxl/libxl_types_internal.idl
+++ b/tools/libxl/libxl_types_internal.idl
@@ -24,6 +24,7 @@ libxl__device_kind = Enumeration("device_kind", [
(8, "VTPM"),
(9, "VUSB"),
(10, "QUSB"),
+ (11, "XENSOCK"),
])
libxl__console_backend = Enumeration("console_backend", [
diff --git a/tools/libxl/xl_cmdimpl.c b/tools/libxl/xl_cmdimpl.c
index 03ab644..7d8257e 100644
--- a/tools/libxl/xl_cmdimpl.c
+++ b/tools/libxl/xl_cmdimpl.c
@@ -1898,6 +1898,18 @@ static void parse_config_data(const char *config_source,
free(buf2);
}
}
+
+ if (!xlu_cfg_get_long(config, "xensock", &l, 0)) {
+ libxl_device_xensock *xensock;
+ fprintf(stderr, "Creating xensock l=%lu\n", l);
+ d_config->num_xensocks = 0;
+ d_config->xensocks = NULL;
+ xensock = ARRAY_EXTEND_INIT(d_config->xensocks,
+ d_config->num_xensocks,
+ libxl_device_xensock_init);
+ libxl_device_xensock_init(xensock);
+ replace_string(&xensock->backend_domname, "0");
+ }
if (!xlu_cfg_get_list (config, "channel", &channels, 0, 0)) {
d_config->num_channels = 0;
_______________________________________________
Xen-devel mailing list
Xen-devel@lists.xen.org
https://lists.xen.org/xen-devel