Question #695154 on Yade changed: https://answers.launchpad.net/yade/+question/695154
Karol Brzezinski posted a new comment: Vasileios, thank you for providing those top-notch papers! They are very general and formalized, so I have only skim-read them. My intuitive idea seems to be similar to the solution presented in the paper of Prof. Feng [1]: "(...) The above conclusion has a sound physical explanation: if the current contact state is fully described by a contact tenergy function w, the true contact force and moment at the state will reduce the contact energy most effectively or at the greatest rate, i.e. along the negative gradient direction of w." The main problem is the calculation of the contact energy function - w. As I said, his approach is more general and can be applied to 'arbitrarily shaped particles'. Still, I think that the 'maximum area polygon approach' presented above, can be a solution of a special case: convex-shaped polyhedra :) I also agree that if only contacts were more stable, the polyhedra would be unbeatable for many applications. Jan, I do not know if the proposed solution can be easily interpreted in 2D. However, we can benefit from the simplicity of your 2D sketches and stay in 3D space, by assuming axisymmetry. In all of the proposed cases, the hull intersection of the contact will be a circle. This circle projected on any plane other than horizontal would be an ellipse with an area smaller than the area of the circle. So, it leaves only one choice of the normal contact direction :) Best wishes, Karol [1] https://www.sciencedirect.com/science/article/pii/S0045782520306393 -- You received this question notification because your team yade-users is an answer contact for Yade. _______________________________________________ Mailing list: https://launchpad.net/~yade-users Post to : yade-users@lists.launchpad.net Unsubscribe : https://launchpad.net/~yade-users More help : https://help.launchpad.net/ListHelp