[ 
https://issues.apache.org/jira/browse/YARN-7224?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16221198#comment-16221198
 ] 

Wangda Tan commented on YARN-7224:
----------------------------------

Failed unit tests are not related to this patch, TestNodeStatusUpdater failure 
is related to YARN-7320. And deploy the latest patch on GPU cluster, ran 
Tensorflow via distributed shell job which requests GPU, didn't see any issue.

> Support GPU isolation for docker container
> ------------------------------------------
>
>                 Key: YARN-7224
>                 URL: https://issues.apache.org/jira/browse/YARN-7224
>             Project: Hadoop YARN
>          Issue Type: Sub-task
>            Reporter: Wangda Tan
>            Assignee: Wangda Tan
>         Attachments: YARN-7224.001.patch, YARN-7224.002-wip.patch, 
> YARN-7224.003.patch, YARN-7224.004.patch, YARN-7224.005.patch, 
> YARN-7224.006.patch, YARN-7224.007.patch, YARN-7224.008.patch
>
>
> This patch is to address issues when docker container is being used:
> 1. GPU driver and nvidia libraries: If GPU drivers and NV libraries are 
> pre-packaged inside docker image, it could conflict to driver and 
> nvidia-libraries installed on Host OS. An alternative solution is to detect 
> Host OS's installed drivers and devices, mount it when launch docker 
> container. Please refer to \[1\] for more details. 
> 2. Image detection: 
> From \[2\], the challenge is: 
> bq. Mounting user-level driver libraries and device files clobbers the 
> environment of the container, it should be done only when the container is 
> running a GPU application. The challenge here is to determine if a given 
> image will be using the GPU or not. We should also prevent launching 
> containers based on a Docker image that is incompatible with the host NVIDIA 
> driver version, you can find more details on this wiki page.
> 3. GPU isolation.
> *Proposed solution*:
> a. Use nvidia-docker-plugin \[3\] to address issue #1, this is the same 
> solution used by K8S \[4\]. issue #2 could be addressed in a separate JIRA.
> We won't ship nvidia-docker-plugin with out releases and we require cluster 
> admin to preinstall nvidia-docker-plugin to use GPU+docker support on YARN. 
> "nvidia-docker" is a wrapper of docker binary which can address #3 as well, 
> however "nvidia-docker" doesn't provide same semantics of docker, and it 
> needs to setup additional environments such as PATH/LD_LIBRARY_PATH to use 
> it. To avoid introducing additional issues, we plan to use 
> nvidia-docker-plugin + docker binary approach.
> b. To address GPU driver and nvidia libraries, we uses nvidia-docker-plugin 
> \[3\] to create a volume which includes GPU-related libraries and mount it 
> when docker container being launched. Changes include: 
> - Instead of using {{volume-driver}}, this patch added {{docker volume 
> create}} command to c-e and NM Java side. The reason is {{volume-driver}} can 
> only use single volume driver for each launched docker container.
> - Updated {{c-e}} and Java side, if a mounted volume is a named volume in 
> docker, skip checking file existence. (Named-volume still need to be added to 
> permitted list of container-executor.cfg).
> c. To address isolation issue:
> We found that, cgroup + docker doesn't work under newer docker version which 
> uses {{runc}} as default runtime. Setting {{--cgroup-parent}} to a cgroup 
> which include any {{devices.deny}} causes docker container cannot be launched.
> Instead this patch passes allowed GPU devices via {{--device}} to docker 
> launch command.
> References:
> \[1\] https://github.com/NVIDIA/nvidia-docker/wiki/NVIDIA-driver
> \[2\] https://github.com/NVIDIA/nvidia-docker/wiki/Image-inspection
> \[3\] https://github.com/NVIDIA/nvidia-docker/wiki/nvidia-docker-plugin
> \[4\] https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/



--
This message was sent by Atlassian JIRA
(v6.4.14#64029)

---------------------------------------------------------------------
To unsubscribe, e-mail: yarn-issues-unsubscr...@hadoop.apache.org
For additional commands, e-mail: yarn-issues-h...@hadoop.apache.org

Reply via email to