================
@@ -3829,6 +3829,330 @@ static bool CheckArraySize(EvalInfo &Info, const 
ConstantArrayType *CAT,
       /*Diag=*/true);
 }
 
+static bool handleScalarCast(EvalInfo &Info, const FPOptions FPO, const Expr 
*E,
+                             QualType SourceTy, QualType DestTy,
+                             APValue const &Original, APValue &Result) {
+  // boolean must be checked before integer
+  // since IsIntegerType() is true for bool
+  if (SourceTy->isBooleanType()) {
+    if (DestTy->isBooleanType()) {
+      Result = Original;
+      return true;
+    }
+    if (DestTy->isIntegerType() || DestTy->isRealFloatingType()) {
+      bool BoolResult;
+      if (!HandleConversionToBool(Original, BoolResult))
+        return false;
+      uint64_t IntResult = BoolResult;
+      QualType IntType = DestTy->isIntegerType()
+                             ? DestTy
+                             : Info.Ctx.getIntTypeForBitwidth(64, false);
+      Result = APValue(Info.Ctx.MakeIntValue(IntResult, IntType));
+    }
+    if (DestTy->isFloatingType()) {
+      APValue Result2 = APValue(APFloat(0.0));
+      if (!HandleIntToFloatCast(Info, E, FPO,
+                                Info.Ctx.getIntTypeForBitwidth(64, false),
+                                Result.getInt(), DestTy, Result2.getFloat()))
+        return false;
+      Result = Result2;
+    }
+    return true;
+  }
+  if (SourceTy->isIntegerType()) {
+    if (DestTy->isRealFloatingType()) {
+      Result = APValue(APFloat(0.0));
+      return HandleIntToFloatCast(Info, E, FPO, SourceTy, Original.getInt(),
+                                  DestTy, Result.getFloat());
+    }
+    if (DestTy->isBooleanType()) {
+      bool BoolResult;
+      if (!HandleConversionToBool(Original, BoolResult))
+        return false;
+      uint64_t IntResult = BoolResult;
+      Result = APValue(Info.Ctx.MakeIntValue(IntResult, DestTy));
+      return true;
+    }
+    if (DestTy->isIntegerType()) {
+      Result = APValue(
+          HandleIntToIntCast(Info, E, DestTy, SourceTy, Original.getInt()));
+      return true;
+    }
+  } else if (SourceTy->isRealFloatingType()) {
+    if (DestTy->isRealFloatingType()) {
+      Result = Original;
+      return HandleFloatToFloatCast(Info, E, SourceTy, DestTy,
+                                    Result.getFloat());
+    }
+    if (DestTy->isBooleanType()) {
+      bool BoolResult;
+      if (!HandleConversionToBool(Original, BoolResult))
+        return false;
+      uint64_t IntResult = BoolResult;
+      Result = APValue(Info.Ctx.MakeIntValue(IntResult, DestTy));
+      return true;
+    }
+    if (DestTy->isIntegerType()) {
+      Result = APValue(APSInt());
+      return HandleFloatToIntCast(Info, E, SourceTy, Original.getFloat(),
+                                  DestTy, Result.getInt());
+    }
+  }
+
+  return false;
+}
+
+// do the heavy lifting for casting to aggregate types
+// because we have to deal with bitfields specially
+static bool constructAggregate(EvalInfo &Info, const FPOptions FPO,
+                               const Expr *E, APValue &Result,
+                               QualType ResultType,
+                               SmallVectorImpl<APValue> &Elements,
+                               SmallVectorImpl<QualType> &ElTypes) {
+
+  SmallVector<std::tuple<APValue *, QualType, unsigned>> WorkList = {
+      {&Result, ResultType, 0}};
+
+  unsigned ElI = 0;
+  while (!WorkList.empty() && ElI < Elements.size()) {
+    auto [Res, Type, BitWidth] = WorkList.pop_back_val();
+
+    if (Type->isRealFloatingType()) {
+      if (!handleScalarCast(Info, FPO, E, ElTypes[ElI], Type, Elements[ElI],
+                            *Res))
+        return false;
+      ElI++;
+      continue;
+    }
+    if (Type->isIntegerType()) {
+      if (!handleScalarCast(Info, FPO, E, ElTypes[ElI], Type, Elements[ElI],
+                            *Res))
+        return false;
+      if (BitWidth > 0) {
+        if (!Res->isInt())
+          return false;
+        APSInt &Int = Res->getInt();
+        unsigned OldBitWidth = Int.getBitWidth();
+        unsigned NewBitWidth = BitWidth;
+        if (NewBitWidth < OldBitWidth)
+          Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
----------------
bob80905 wrote:

I get the sense my comment here:
Can we really guarantee that this memory won't be overwritten and these results 
will be consistent?
is relevant to this line of code. By extending, we guarantee the memory is 
preserved?
Is there an agreed upon design that shows this is the desired behavior?

https://github.com/llvm/llvm-project/pull/164700
_______________________________________________
cfe-commits mailing list
[email protected]
https://lists.llvm.org/cgi-bin/mailman/listinfo/cfe-commits

Reply via email to