utkarsharma2 commented on code in PR #35547:
URL: https://github.com/apache/airflow/pull/35547#discussion_r1390685136


##########
airflow/providers/openai/operators/openai.py:
##########
@@ -31,41 +32,46 @@ class OpenAIEmbeddingOperator(BaseOperator):
     """
     Operator that accepts input text to generate OpenAI embeddings using the 
specified model.
 
+    :param conn_id: The OpenAI connection ID to use.
+    :param input_text: The text to generate OpenAI embeddings for. This can be 
a string, a list of strings,
+                    a list of integers, or a list of lists of integers.
+    :param model: The OpenAI model to be used for generating the embeddings.
+    :param embedding_kwargs: Additional keyword arguments to pass to the 
OpenAI `create_embeddings` method.
+
     .. seealso::
         For more information on how to use this operator, take a look at the 
guide:
         :ref:`howto/operator:OpenAIEmbeddingOperator`
-
-    :param conn_id: The OpenAI connection.
-    :param input_text: The text to generate OpenAI embeddings on. Either 
input_text or input_callable
-        should be provided.
-    :param model: The OpenAI model to be used for generating the embeddings.
-    :param embedding_kwargs: For possible option check
-        .. seealso:: 
https://platform.openai.com/docs/api-reference/embeddings/create
+        For possible options for `embedding_kwargs`, see:
+        https://platform.openai.com/docs/api-reference/embeddings/create
     """
 
     template_fields: Sequence[str] = ("input_text",)
 
     def __init__(
         self,
         conn_id: str,
-        input_text: str | list[Any],
+        input_text: str | list[str] | list[int] | list[list[int]],
         model: str = "text-embedding-ada-002",
         embedding_kwargs: dict | None = None,
         **kwargs: Any,
     ):
-        self.embedding_kwargs = embedding_kwargs or {}
         super().__init__(**kwargs)
         self.conn_id = conn_id
         self.input_text = input_text
         self.model = model
+        self.embedding_kwargs = embedding_kwargs or {}
 
     @cached_property
     def hook(self) -> OpenAIHook:
         """Return an instance of the OpenAIHook."""
         return OpenAIHook(conn_id=self.conn_id)
 
     def execute(self, context: Context) -> list[float]:
-        self.log.info("Input text: %s", self.input_text)
+        if not self.input_text or not isinstance(self.input_text, (str, list)):

Review Comment:
   we may want to move this check into __init__() since it would be a quicker 
response to the user specifying the wrong type. 



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: commits-unsubscr...@airflow.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org

Reply via email to