Author: luc
Date: Fri Jul 29 15:47:36 2011
New Revision: 1152280

URL: http://svn.apache.org/viewvc?rev=1152280&view=rev
Log:
Added a solver for Dfp-based (i.e. high accuracy) functions.

JIRA: MATH-636

Added:
    
commons/proper/math/trunk/src/main/java/org/apache/commons/math/dfp/BracketingNthOrderBrentSolverDFP.java
   (with props)
    
commons/proper/math/trunk/src/main/java/org/apache/commons/math/dfp/UnivariateDfpFunction.java
   (with props)
    
commons/proper/math/trunk/src/test/java/org/apache/commons/math/dfp/BracketingNthOrderBrentSolverDFPTest.java
   (with props)
Modified:
    commons/proper/math/trunk/src/site/xdoc/changes.xml

Added: 
commons/proper/math/trunk/src/main/java/org/apache/commons/math/dfp/BracketingNthOrderBrentSolverDFP.java
URL: 
http://svn.apache.org/viewvc/commons/proper/math/trunk/src/main/java/org/apache/commons/math/dfp/BracketingNthOrderBrentSolverDFP.java?rev=1152280&view=auto
==============================================================================
--- 
commons/proper/math/trunk/src/main/java/org/apache/commons/math/dfp/BracketingNthOrderBrentSolverDFP.java
 (added)
+++ 
commons/proper/math/trunk/src/main/java/org/apache/commons/math/dfp/BracketingNthOrderBrentSolverDFP.java
 Fri Jul 29 15:47:36 2011
@@ -0,0 +1,438 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math.dfp;
+
+
+import org.apache.commons.math.analysis.solvers.AllowedSolutions;
+import org.apache.commons.math.exception.MathInternalError;
+import org.apache.commons.math.exception.NoBracketingException;
+import org.apache.commons.math.exception.NumberIsTooSmallException;
+import org.apache.commons.math.util.Incrementor;
+import org.apache.commons.math.util.MathUtils;
+
+/**
+ * This class implements a modification of the <a
+ * href="http://mathworld.wolfram.com/BrentsMethod.html";> Brent algorithm</a>.
+ * <p>
+ * The changes with respect to the original Brent algorithm are:
+ * <ul>
+ *   <li>the returned value is chosen in the current interval according
+ *   to user specified {@link AllowedSolutions},</li>
+ *   <li>the maximal order for the invert polynomial root search is
+ *   user-specified instead of being invert quadratic only</li>
+ * </ul>
+ * </p>
+ * The given interval must bracket the root.
+ *
+ * @version $Id$
+ */
+public class BracketingNthOrderBrentSolverDFP {
+
+   /** Maximal aging triggering an attempt to balance the bracketing interval. 
*/
+    private static final int MAXIMAL_AGING = 2;
+
+    /** Maximal order. */
+    private final int maximalOrder;
+
+    /** Function value accuracy. */
+    private final Dfp functionValueAccuracy;
+
+    /** Absolute accuracy. */
+    private final Dfp absoluteAccuracy;
+
+    /** Relative accuracy. */
+    private final Dfp relativeAccuracy;
+
+    /** Evaluations counter. */
+    private final Incrementor evaluations = new Incrementor();
+
+    /**
+     * Construct a solver.
+     *
+     * @param relativeAccuracy Relative accuracy.
+     * @param absoluteAccuracy Absolute accuracy.
+     * @param functionValueAccuracy Function value accuracy.
+     * @param maximalOrder maximal order.
+     * @exception NumberIsTooSmallException if maximal order is lower than 2
+     */
+    public BracketingNthOrderBrentSolverDFP(final Dfp relativeAccuracy,
+                                            final Dfp absoluteAccuracy,
+                                            final Dfp functionValueAccuracy,
+                                            final int maximalOrder)
+        throws NumberIsTooSmallException {
+        if (maximalOrder < 2) {
+            throw new NumberIsTooSmallException(maximalOrder, 2, true);
+        }
+        this.maximalOrder = maximalOrder;
+        this.absoluteAccuracy = absoluteAccuracy;
+        this.relativeAccuracy = relativeAccuracy;
+        this.functionValueAccuracy = functionValueAccuracy;
+    }
+
+    /** Get the maximal order.
+     * @return maximal order
+     */
+    public int getMaximalOrder() {
+        return maximalOrder;
+    }
+
+    /**
+     * Get the maximal number of function evaluations.
+     *
+     * @return the maximal number of function evaluations.
+     */
+    public int getMaxEvaluations() {
+        return evaluations.getMaximalCount();
+    }
+
+    /**
+     * Get the number of evaluations of the objective function.
+     * The number of evaluations corresponds to the last call to the
+     * {@code optimize} method. It is 0 if the method has not been
+     * called yet.
+     *
+     * @return the number of evaluations of the objective function.
+     */
+    public int getEvaluations() {
+        return evaluations.getCount();
+    }
+
+    /**
+     * Get the absolute accuracy.
+     * @return absolute accuracy
+     */
+    public Dfp getAbsoluteAccuracy() {
+        return absoluteAccuracy;
+    }
+
+    /**
+     * Get the relative accuracy.
+     * @return relative accuracy
+     */
+    public Dfp getRelativeAccuracy() {
+        return relativeAccuracy;
+    }
+
+    /**
+     * Get the function accuracy.
+     * @return function accuracy
+     */
+    public Dfp getFunctionValueAccuracy() {
+        return functionValueAccuracy;
+    }
+
+    /**
+     * Solve for a zero in the given interval.
+     * A solver may require that the interval brackets a single zero root.
+     * Solvers that do require bracketing should be able to handle the case
+     * where one of the endpoints is itself a root.
+     *
+     * @param maxEval Maximum number of evaluations.
+     * @param f Function to solve.
+     * @param min Lower bound for the interval.
+     * @param max Upper bound for the interval.
+     * @param allowedSolutions The kind of solutions that the root-finding 
algorithm may
+     * accept as solutions.
+     * @return a value where the function is zero.
+     * @throws org.apache.commons.math.exception.MathIllegalArgumentException
+     * if the arguments do not satisfy the requirements specified by the 
solver.
+     * @throws org.apache.commons.math.exception.TooManyEvaluationsException if
+     * the allowed number of evaluations is exceeded.
+     */
+    public Dfp solve(final int maxEval, final UnivariateDfpFunction f,
+                     final Dfp min, final Dfp max, final AllowedSolutions 
allowedSolutions) {
+        return solve(maxEval, f, min, max, min.add(max).divide(2), 
allowedSolutions);
+    }
+
+    /**
+     * Solve for a zero in the given interval, start at {@code startValue}.
+     * A solver may require that the interval brackets a single zero root.
+     * Solvers that do require bracketing should be able to handle the case
+     * where one of the endpoints is itself a root.
+     *
+     * @param maxEval Maximum number of evaluations.
+     * @param f Function to solve.
+     * @param min Lower bound for the interval.
+     * @param max Upper bound for the interval.
+     * @param startValue Start value to use.
+     * @param allowedSolutions The kind of solutions that the root-finding 
algorithm may
+     * accept as solutions.
+     * @return a value where the function is zero.
+     * @throws org.apache.commons.math.exception.MathIllegalArgumentException
+     * if the arguments do not satisfy the requirements specified by the 
solver.
+     * @throws org.apache.commons.math.exception.TooManyEvaluationsException if
+     * the allowed number of evaluations is exceeded.
+     */
+    public Dfp solve(final int maxEval, final UnivariateDfpFunction f,
+                     final Dfp min, final Dfp max, final Dfp startValue,
+                     final AllowedSolutions allowedSolutions) {
+
+        // Checks.
+        MathUtils.checkNotNull(f);
+
+        // Reset.
+        evaluations.setMaximalCount(maxEval);
+        evaluations.resetCount();
+        Dfp zero = startValue.getZero();
+        Dfp nan  = zero.newInstance((byte) 1, Dfp.QNAN);
+
+        // prepare arrays with the first points
+        final Dfp[] x = new Dfp[maximalOrder + 1];
+        final Dfp[] y = new Dfp[maximalOrder + 1];
+        x[0] = min;
+        x[1] = startValue;
+        x[2] = max;
+
+        // evaluate initial guess
+        evaluations.incrementCount();
+        y[1] = f.value(x[1]);
+        if (y[1].isZero()) {
+            // return the initial guess if it is a perfect root.
+            return x[1];
+        }
+
+        // evaluate first  endpoint
+        evaluations.incrementCount();
+        y[0] = f.value(x[0]);
+        if (y[0].isZero()) {
+            // return the first endpoint if it is a perfect root.
+            return x[0];
+        }
+
+        int nbPoints;
+        int signChangeIndex;
+        if (y[0].multiply(y[1]).negativeOrNull()) {
+
+            // reduce interval if it brackets the root
+            nbPoints        = 2;
+            signChangeIndex = 1;
+
+        } else {
+
+            // evaluate second endpoint
+            evaluations.incrementCount();
+            y[2] = f.value(x[2]);
+            if (y[2].isZero()) {
+                // return the second endpoint if it is a perfect root.
+                return x[2];
+            }
+
+            if (y[1].multiply(y[2]).negativeOrNull()) {
+                // use all computed point as a start sampling array for solving
+                nbPoints        = 3;
+                signChangeIndex = 2;
+            } else {
+                throw new NoBracketingException(x[0].toDouble(), 
x[2].toDouble(),
+                                                y[0].toDouble(), 
y[2].toDouble());
+            }
+
+        }
+
+        // prepare a work array for inverse polynomial interpolation
+        final Dfp[] tmpX = new Dfp[x.length];
+
+        // current tightest bracketing of the root
+        Dfp xA    = x[signChangeIndex - 1];
+        Dfp yA    = y[signChangeIndex - 1];
+        Dfp absXA = xA.abs();
+        Dfp absYA = yA.abs();
+        int agingA   = 0;
+        Dfp xB    = x[signChangeIndex];
+        Dfp yB    = y[signChangeIndex];
+        Dfp absXB = xB.abs();
+        Dfp absYB = yB.abs();
+        int agingB   = 0;
+
+        // search loop
+        while (true) {
+
+            // check convergence of bracketing interval
+            Dfp maxX = absXA.lessThan(absXB) ? absXB : absXA;
+            Dfp maxY = absYA.lessThan(absYB) ? absYB : absYA;
+            final Dfp xTol = 
absoluteAccuracy.add(relativeAccuracy.multiply(maxX));
+            if (xB.subtract(xA).subtract(xTol).negativeOrNull() ||
+                maxY.lessThan(functionValueAccuracy)) {
+                switch (allowedSolutions) {
+                case ANY_SIDE :
+                    return absYA.lessThan(absYB) ? xA : xB;
+                case LEFT_SIDE :
+                    return xA;
+                case RIGHT_SIDE :
+                    return xB;
+                case BELOW_SIDE :
+                    return yA.lessThan(zero) ? xA : xB;
+                case ABOVE_SIDE :
+                    return yA.lessThan(zero) ? xB : xA;
+                default :
+                    // this should never happen
+                    throw new MathInternalError(null);
+                }
+            }
+
+            // target for the next evaluation point
+            Dfp targetY;
+            if (agingA >= MAXIMAL_AGING) {
+                // we keep updating the high bracket, try to compensate this
+                targetY = yB.divide(16).negate();
+            } else if (agingB >= MAXIMAL_AGING) {
+                // we keep updating the low bracket, try to compensate this
+                targetY = yA.divide(16).negate();
+            } else {
+                // bracketing is balanced, try to find the root itself
+                targetY = zero;
+            }
+
+            // make a few attempts to guess a root,
+            Dfp nextX;
+            int start = 0;
+            int end   = nbPoints;
+            do {
+
+                // guess a value for current target, using inverse polynomial 
interpolation
+                System.arraycopy(x, start, tmpX, start, end - start);
+                nextX = guessX(targetY, tmpX, y, start, end);
+
+                if (!(nextX.greaterThan(xA) && nextX.lessThan(xB))) {
+                    // the guessed root is not strictly inside of the tightest 
bracketing interval
+
+                    // the guessed root is either not strictly inside the 
interval or it
+                    // is a NaN (which occurs when some sampling points share 
the same y)
+                    // we try again with a lower interpolation order
+                    if (signChangeIndex - start >= end - signChangeIndex) {
+                        // we have more points before the sign change, drop 
the lowest point
+                        ++start;
+                    } else {
+                        // we have more points after sign change, drop the 
highest point
+                        --end;
+                    }
+
+                    // we need to do one more attempt
+                    nextX = nan;
+
+                }
+
+            } while (nextX.isNaN() && (end - start > 1));
+
+            if (nextX.isNaN()) {
+                // fall back to bisection
+                nextX = xA.add(xB.subtract(xA).divide(2));
+                start = signChangeIndex - 1;
+                end   = signChangeIndex;
+            }
+
+            // evaluate the function at the guessed root
+            evaluations.incrementCount();
+            final Dfp nextY = f.value(nextX);
+            if (nextY.isZero()) {
+                // we have found an exact root, since it is not an 
approximation
+                // we don't need to bother about the allowed solutions setting
+                return nextX;
+            }
+
+            if ((nbPoints > 2) && (end - start != nbPoints)) {
+
+                // we have been forced to ignore some points to keep 
bracketing,
+                // they are probably too far from the root, drop them from now 
on
+                nbPoints = end - start;
+                System.arraycopy(x, start, x, 0, nbPoints);
+                System.arraycopy(y, start, y, 0, nbPoints);
+                signChangeIndex -= start;
+
+            } else  if (nbPoints == x.length) {
+
+                // we have to drop one point in order to insert the new one
+                nbPoints--;
+
+                // keep the tightest bracketing interval as centered as 
possible
+                if (signChangeIndex >= (x.length + 1) / 2) {
+                    // we drop the lowest point, we have to shift the arrays 
and the index
+                    System.arraycopy(x, 1, x, 0, nbPoints);
+                    System.arraycopy(y, 1, y, 0, nbPoints);
+                    --signChangeIndex;
+                }
+
+            }
+
+            // insert the last computed point
+            //(by construction, we know it lies inside the tightest bracketing 
interval)
+            System.arraycopy(x, signChangeIndex, x, signChangeIndex + 1, 
nbPoints - signChangeIndex);
+            x[signChangeIndex] = nextX;
+            System.arraycopy(y, signChangeIndex, y, signChangeIndex + 1, 
nbPoints - signChangeIndex);
+            y[signChangeIndex] = nextY;
+            ++nbPoints;
+
+            // update the bracketing interval
+            if (nextY.multiply(yA).negativeOrNull()) {
+                // the sign change occurs before the inserted point
+                xB = nextX;
+                yB = nextY;
+                absYB = yB.abs();
+                ++agingA;
+                agingB = 0;
+            } else {
+                // the sign change occurs after the inserted point
+                xA = nextX;
+                yA = nextY;
+                absYA = yA.abs();
+                agingA = 0;
+                ++agingB;
+
+                // update the sign change index
+                signChangeIndex++;
+
+            }
+
+        }
+
+    }
+
+    /** Guess an x value by n<sup>th</sup> order inverse polynomial 
interpolation.
+     * <p>
+     * The x value is guessed by evaluating polynomial Q(y) at y = targetY, 
where Q
+     * is built such that for all considered points (x<sub>i</sub>, 
y<sub>i</sub>),
+     * Q(y<sub>i</sub>) = x<sub>i</sub>.
+     * </p>
+     * @param targetY target value for y
+     * @param x reference points abscissas for interpolation,
+     * note that this array <em>is</em> modified during computation
+     * @param y reference points ordinates for interpolation
+     * @param start start index of the points to consider (inclusive)
+     * @param end end index of the points to consider (exclusive)
+     * @return guessed root (will be a NaN if two points share the same y)
+     */
+    private Dfp guessX(final Dfp targetY, final Dfp[] x, final Dfp[] y,
+                       final int start, final int end) {
+
+        // compute Q Newton coefficients by divided differences
+        for (int i = start; i < end - 1; ++i) {
+            final int delta = i + 1 - start;
+            for (int j = end - 1; j > i; --j) {
+                x[j] = x[j].subtract(x[j-1]).divide(y[j].subtract(y[j - 
delta]));
+            }
+        }
+
+        // evaluate Q(targetY)
+        Dfp x0 = targetY.getZero();
+        for (int j = end - 1; j >= start; --j) {
+            x0 = x[j].add(x0.multiply(targetY.subtract(y[j])));
+        }
+
+        return x0;
+
+    }
+
+}

Propchange: 
commons/proper/math/trunk/src/main/java/org/apache/commons/math/dfp/BracketingNthOrderBrentSolverDFP.java
------------------------------------------------------------------------------
    svn:eol-style = native

Propchange: 
commons/proper/math/trunk/src/main/java/org/apache/commons/math/dfp/BracketingNthOrderBrentSolverDFP.java
------------------------------------------------------------------------------
    svn:keywords = Author Date Id Revision

Added: 
commons/proper/math/trunk/src/main/java/org/apache/commons/math/dfp/UnivariateDfpFunction.java
URL: 
http://svn.apache.org/viewvc/commons/proper/math/trunk/src/main/java/org/apache/commons/math/dfp/UnivariateDfpFunction.java?rev=1152280&view=auto
==============================================================================
--- 
commons/proper/math/trunk/src/main/java/org/apache/commons/math/dfp/UnivariateDfpFunction.java
 (added)
+++ 
commons/proper/math/trunk/src/main/java/org/apache/commons/math/dfp/UnivariateDfpFunction.java
 Fri Jul 29 15:47:36 2011
@@ -0,0 +1,51 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math.dfp;
+
+import org.apache.commons.math.exception.MathUserException;
+
+/**
+ * An interface representing a univariate {@link Dfp} function.
+ *
+ * @version $Id$
+ */
+public interface UnivariateDfpFunction {
+
+    /**
+     * Compute the value of the function.
+     *
+     * @param x Point at which the function value should be computed.
+     * @return the value.
+     * @throws IllegalArgumentException when the activated method itself can
+     * ascertain that preconditions, specified in the API expressed at the
+     * level of the activated method, have been violated.  In the vast
+     * majority of cases where Commons-Math throws IllegalArgumentException,
+     * it is the result of argument checking of actual parameters immediately
+     * passed to a method.
+     * @throws MathUserException when the method may encounter errors during 
evaluation.
+     * This should be thrown only in circumstances where, at the level of the
+     * activated function, IllegalArgumentException is not appropriate and it
+     * should indicate that while formal preconditions of the method have not
+     * been violated, an irrecoverable error has occurred evaluating a
+     * function at some (usually lower) level of the call stack.
+     * Convergence failures, runtime exceptions (even IllegalArgumentException)
+     * in user code or lower level methods can cause (and should be wrapped in)
+     * a MathUserException.
+     */
+    Dfp value(Dfp x) throws MathUserException;
+
+}

Propchange: 
commons/proper/math/trunk/src/main/java/org/apache/commons/math/dfp/UnivariateDfpFunction.java
------------------------------------------------------------------------------
    svn:eol-style = native

Propchange: 
commons/proper/math/trunk/src/main/java/org/apache/commons/math/dfp/UnivariateDfpFunction.java
------------------------------------------------------------------------------
    svn:keywords = Author Date Id Revision

Modified: commons/proper/math/trunk/src/site/xdoc/changes.xml
URL: 
http://svn.apache.org/viewvc/commons/proper/math/trunk/src/site/xdoc/changes.xml?rev=1152280&r1=1152279&r2=1152280&view=diff
==============================================================================
--- commons/proper/math/trunk/src/site/xdoc/changes.xml (original)
+++ commons/proper/math/trunk/src/site/xdoc/changes.xml Fri Jul 29 15:47:36 2011
@@ -52,6 +52,9 @@ The <action> type attribute can be add,u
     If the output is not quite correct, check for invisible trailing spaces!
      -->
     <release version="3.0" date="TBD" description="TBD">
+      <action dev="luc" type="add" issue="MATH-636" >
+        Added a solver for Dfp-based (i.e. high accuracy) functions.
+      </action>
       <action dev="luc" type="add" issue="MATH-635" >
         Added a Brent-like solver that has higher (user specified) order and 
does
         bracket selection on the result: BracketingNthOrderBrentSolver.

Added: 
commons/proper/math/trunk/src/test/java/org/apache/commons/math/dfp/BracketingNthOrderBrentSolverDFPTest.java
URL: 
http://svn.apache.org/viewvc/commons/proper/math/trunk/src/test/java/org/apache/commons/math/dfp/BracketingNthOrderBrentSolverDFPTest.java?rev=1152280&view=auto
==============================================================================
--- 
commons/proper/math/trunk/src/test/java/org/apache/commons/math/dfp/BracketingNthOrderBrentSolverDFPTest.java
 (added)
+++ 
commons/proper/math/trunk/src/test/java/org/apache/commons/math/dfp/BracketingNthOrderBrentSolverDFPTest.java
 Fri Jul 29 15:47:36 2011
@@ -0,0 +1,171 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math.dfp;
+
+import org.apache.commons.math.analysis.solvers.AllowedSolutions;
+import org.apache.commons.math.exception.MathInternalError;
+import org.apache.commons.math.exception.NumberIsTooSmallException;
+import org.junit.Assert;
+import org.junit.Before;
+import org.junit.Test;
+
+/**
+ * Test case for {@link BracketingNthOrderBrentSolverDFP bracketing 
n<sup>th</sup> order Brent} solver.
+ *
+ * @version $Id$
+ */
+public final class BracketingNthOrderBrentSolverDFPTest {
+
+    @Test(expected=NumberIsTooSmallException.class)
+    public void testInsufficientOrder3() {
+        new BracketingNthOrderBrentSolverDFP(relativeAccuracy, 
absoluteAccuracy,
+                                             functionValueAccuracy, 1);
+    }
+
+    @Test
+    public void testConstructorOK() {
+        BracketingNthOrderBrentSolverDFP solver =
+                new BracketingNthOrderBrentSolverDFP(relativeAccuracy, 
absoluteAccuracy,
+                                                     functionValueAccuracy, 2);
+        Assert.assertEquals(2, solver.getMaximalOrder());
+    }
+
+    @Test
+    public void testConvergenceOnFunctionAccuracy() {
+        BracketingNthOrderBrentSolverDFP solver =
+                new BracketingNthOrderBrentSolverDFP(relativeAccuracy, 
absoluteAccuracy,
+                                                     field.newDfp(1.0e-20), 
20);
+        UnivariateDfpFunction f = new UnivariateDfpFunction() {
+            public Dfp value(Dfp x) {
+                Dfp one     = field.getOne();
+                Dfp oneHalf = one.divide(2);
+                Dfp xMo     = x.subtract(one);
+                Dfp xMh     = x.subtract(oneHalf);
+                Dfp xPh     = x.add(oneHalf);
+                Dfp xPo     = x.add(one);
+                return 
xMo.multiply(xMh).multiply(x).multiply(xPh).multiply(xPo);
+            }
+        };
+
+        Dfp result = solver.solve(20, f, field.newDfp(0.2), field.newDfp(0.9),
+                                  field.newDfp(0.4), 
AllowedSolutions.BELOW_SIDE);
+        
Assert.assertTrue(f.value(result).abs().lessThan(solver.getFunctionValueAccuracy()));
+        Assert.assertTrue(f.value(result).negativeOrNull());
+        
Assert.assertTrue(result.subtract(field.newDfp(0.5)).subtract(solver.getAbsoluteAccuracy()).positiveOrNull());
+        result = solver.solve(20, f, field.newDfp(-0.9), field.newDfp(-0.2),
+                              field.newDfp(-0.4), AllowedSolutions.ABOVE_SIDE);
+        
Assert.assertTrue(f.value(result).abs().lessThan(solver.getFunctionValueAccuracy()));
+        Assert.assertTrue(f.value(result).positiveOrNull());
+        
Assert.assertTrue(result.add(field.newDfp(0.5)).subtract(solver.getAbsoluteAccuracy()).negativeOrNull());
+    }
+
+    @Test
+    public void testNeta() {
+
+        // the following test functions come from Beny Neta's paper:
+        // "Several New Methods for solving Equations"
+        // intern J. Computer Math Vol 23 pp 265-282
+        // available here: 
http://www.math.nps.navy.mil/~bneta/SeveralNewMethods.PDF
+        for (AllowedSolutions allowed : AllowedSolutions.values()) {
+            check(new UnivariateDfpFunction() {
+                public Dfp value(Dfp x) {
+                    return DfpMath.sin(x).subtract(x.divide(2));
+                }
+            }, 200, -2.0, 2.0, allowed);
+
+            check(new UnivariateDfpFunction() {
+                public Dfp value(Dfp x) {
+                    return DfpMath.pow(x, 
5).add(x).subtract(field.newDfp(10000));
+                }
+            }, 200, -5.0, 10.0, allowed);
+
+            check(new UnivariateDfpFunction() {
+                public Dfp value(Dfp x) {
+                    return 
x.sqrt().subtract(field.getOne().divide(x)).subtract(field.newDfp(3));
+                }
+            }, 200, 0.001, 10.0, allowed);
+
+            check(new UnivariateDfpFunction() {
+                public Dfp value(Dfp x) {
+                    return DfpMath.exp(x).add(x).subtract(field.newDfp(20));
+                }
+            }, 200, -5.0, 5.0, allowed);
+
+            check(new UnivariateDfpFunction() {
+                public Dfp value(Dfp x) {
+                    return 
DfpMath.log(x).add(x.sqrt()).subtract(field.newDfp(5));
+                }
+            }, 200, 0.001, 10.0, allowed);
+
+            check(new UnivariateDfpFunction() {
+                public Dfp value(Dfp x) {
+                    return 
x.subtract(field.getOne()).multiply(x).multiply(x).subtract(field.getOne());
+                }
+            }, 200, -0.5, 1.5, allowed);
+        }
+
+    }
+
+    private void check(UnivariateDfpFunction f, int maxEval, double min, 
double max,
+                       AllowedSolutions allowedSolutions) {
+        BracketingNthOrderBrentSolverDFP solver =
+                new BracketingNthOrderBrentSolverDFP(relativeAccuracy, 
absoluteAccuracy,
+                                                     functionValueAccuracy, 
20);
+        Dfp xResult = solver.solve(maxEval, f, field.newDfp(min), 
field.newDfp(max),
+                                   allowedSolutions);
+        Dfp yResult = f.value(xResult);
+        switch (allowedSolutions) {
+        case ANY_SIDE :
+            
Assert.assertTrue(yResult.abs().lessThan(functionValueAccuracy.multiply(2)));
+            break;
+        case LEFT_SIDE : {
+            boolean increasing = 
f.value(xResult).add(absoluteAccuracy).greaterThan(yResult);
+            Assert.assertTrue(increasing ? yResult.negativeOrNull() : 
yResult.positiveOrNull());
+            break;
+        }
+        case RIGHT_SIDE : {
+            boolean increasing = 
f.value(xResult).add(absoluteAccuracy).greaterThan(yResult);
+            Assert.assertTrue(increasing ? yResult.positiveOrNull() : 
yResult.negativeOrNull());
+            break;
+        }
+        case BELOW_SIDE :
+            Assert.assertTrue(yResult.negativeOrNull());
+            break;
+        case ABOVE_SIDE :
+            Assert.assertTrue(yResult.positiveOrNull());
+            break;
+        default :
+            // this should never happen
+            throw new MathInternalError(null);
+        }
+    }
+
+    @Before
+    public void setUp() {
+        field                 = new DfpField(50);
+        absoluteAccuracy      = field.newDfp(1.0e-45);
+        relativeAccuracy      = field.newDfp(1.0e-45);
+        functionValueAccuracy = field.newDfp(1.0e-45);
+    }
+
+    private DfpField field;
+    private Dfp      absoluteAccuracy;
+    private Dfp      relativeAccuracy;
+    private Dfp      functionValueAccuracy;
+
+}

Propchange: 
commons/proper/math/trunk/src/test/java/org/apache/commons/math/dfp/BracketingNthOrderBrentSolverDFPTest.java
------------------------------------------------------------------------------
    svn:eol-style = native

Propchange: 
commons/proper/math/trunk/src/test/java/org/apache/commons/math/dfp/BracketingNthOrderBrentSolverDFPTest.java
------------------------------------------------------------------------------
    svn:keywords = Author Date Id Revision


Reply via email to