leesf commented on a change in pull request #2761: URL: https://github.com/apache/hudi/pull/2761#discussion_r614774065
########## File path: hudi-spark-datasource/hudi-spark3-extensions_2.12/src/main/scala/org/apache/hudi/execution/HudiSQLUtils.scala ########## @@ -0,0 +1,553 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.hudi.execution + +import java.io.File +import java.util +import java.util.{Locale, Properties} + +import com.google.common.cache.{CacheBuilder, CacheLoader} +import org.apache.avro.generic.GenericRecord +import org.apache.hadoop.conf.Configuration +import org.apache.hadoop.fs.Path +import org.apache.hadoop.hive.conf.HiveConf +import org.apache.hudi.DataSourceReadOptions.{QUERY_TYPE_OPT_KEY, QUERY_TYPE_READ_OPTIMIZED_OPT_VAL, QUERY_TYPE_SNAPSHOT_OPT_VAL} +import org.apache.hudi.DataSourceWriteOptions._ +import org.apache.hudi.HoodieSparkSqlWriter.{TableInstantInfo, toProperties} +import org.apache.hudi.{AvroConversionUtils, DataSourceReadOptions, DataSourceUtils, DataSourceWriteOptions, DefaultSource, HoodieBootstrapPartition, HoodieBootstrapRelation, HoodieSparkSqlWriter, HoodieSparkUtils, HoodieWriterUtils, MergeOnReadSnapshotRelation} +import org.apache.hudi.common.model.{OverwriteNonDefaultsWithLatestAvroPayload, OverwriteWithLatestAvroPayload} +import org.apache.hudi.avro.HoodieAvroUtils +import org.apache.hudi.client.{HoodieWriteResult, SparkRDDWriteClient} +import org.apache.hudi.common.config.TypedProperties +import org.apache.hudi.common.model._ +import org.apache.hudi.common.table.{HoodieTableConfig, HoodieTableMetaClient} +import org.apache.hudi.common.table.timeline.HoodieActiveTimeline +import org.apache.hudi.config.HoodieWriteConfig._ +import org.apache.hudi.exception.{HoodieException, HoodieIOException} +import org.apache.hudi.hive.{HiveSyncConfig, HiveSyncTool} +import org.apache.hudi.keygen.constant.KeyGeneratorOptions +import org.apache.hudi.payload.AWSDmsAvroPayload +import org.apache.hudi.spark3.internal.HoodieDataSourceInternalTable +import org.apache.log4j.LogManager +import org.apache.spark.api.java.JavaSparkContext +import org.apache.spark.rdd.RDD +import org.apache.spark.sql.catalyst.TableIdentifier +import org.apache.spark.sql.{DataFrame, SaveMode, SparkSession} +import org.apache.spark.sql.catalyst.catalog.{CatalogTable, CatalogTableType, HiveTableRelation} +import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan +import org.apache.spark.sql.functions.{col, udf} +import org.apache.spark.sql.execution.datasources.{HadoopFsRelation, LogicalRelation} +import org.apache.spark.sql.execution.datasources.v2.DataSourceV2Relation +import org.apache.spark.sql.sources.BaseRelation +import org.apache.spark.sql.types.StructType +import org.apache.spark.sql.util.CaseInsensitiveStringMap + +import scala.collection.JavaConverters._ +import scala.collection.mutable.ListBuffer + + + +/** + * hudi IUD utils + */ +object HudiSQLUtils { + + val AWSDMSAVROPAYLOAD = classOf[AWSDmsAvroPayload].getName + val OVERWRITEWITHLATESTVROAYLOAD = classOf[OverwriteWithLatestAvroPayload].getName + val OVERWRITENONDEFAULTSWITHLATESTAVROPAYLOAD = classOf[OverwriteNonDefaultsWithLatestAvroPayload].getName + val MERGE_MARKER = "_hoodie_merge_marker" + + private val log = LogManager.getLogger(getClass) + + private val tableConfigCache = CacheBuilder + .newBuilder() + .maximumSize(1000) + .build(new CacheLoader[String, Properties] { + override def load(k: String): Properties = { + try { + HoodieTableMetaClient.builder().setConf(SparkSession.active.sparkContext.hadoopConfiguration) + .setBasePath(k).build().getTableConfig.getProperties + } catch { + // we catch expected error here + case e: HoodieIOException => + log.error(e.getMessage) + new Properties() + case t: Throwable => + throw t + } + } + }) + + def getPropertiesFromTableConfigCache(path: String): Properties = { + if (path.isEmpty) { + throw new HoodieIOException("unexpected empty hoodie table basePath") + } + tableConfigCache.get(path) + } + + private def matchHoodieRelation(relation: BaseRelation): Boolean = relation match { + case h: HadoopFsRelation if (h.options.get("hoodie.datasource.write.table.type") != null) => true + case m: MergeOnReadSnapshotRelation => true + case b: HoodieBootstrapRelation => true + case _ => false + } + + def isHudiRelation(table: LogicalPlan): Boolean = { + table.collect { + case h: HiveTableRelation if (h.tableMeta.storage.inputFormat.getOrElse("").contains("Hoodie")) => + true + case DataSourceV2Relation(_: HoodieDataSourceInternalTable, _, _, _, _) => true + case LogicalRelation(r: BaseRelation, _, _, _) if (matchHoodieRelation(r)) => true + }.nonEmpty + } + + def isHudiRelation(table: CatalogTable): Boolean = { + table.provider.map(_.toLowerCase(Locale.ROOT)).getOrElse("").equals("hudi") + } + + def isHudiRelation(tableId: TableIdentifier, spark: SparkSession): Boolean = { + val table = spark.sessionState.catalog.getTableMetadata(tableId) + isHudiRelation(table) + } + + def getTablePath(spark: SparkSession, table: CatalogTable): String = { + val url = if (table.tableType == CatalogTableType.MANAGED) { + Some(spark.sessionState.catalog.defaultTablePath(table.identifier)) + } else { + table.storage.locationUri + } + val fs = new Path(url.get).getFileSystem(spark.sparkContext.hadoopConfiguration) + val rawPath = fs.makeQualified(new Path(url.get)).toUri.toString + // remove placeHolder + if (rawPath.endsWith("-PLACEHOLDER")) { + rawPath.substring(0, rawPath.length() - 16) + } else { + rawPath + } + } + + def buildDefaultParameter(parameters: Map[String, String], enableHive: Boolean = true): Map[String, String] = { + val newParameters = HoodieWriterUtils.parametersWithWriteDefaults(parameters) ++ Map( + HIVE_PARTITION_EXTRACTOR_CLASS_OPT_KEY -> "org.apache.hudi.hive.MultiPartKeysValueExtractor", + KEYGENERATOR_CLASS_PROP -> "org.apache.hudi.keygen.ComplexKeyGenerator", + HIVE_PARTITION_EXTRACTOR_CLASS_OPT_KEY -> "org.apache.hudi.hive.MultiPartKeysValueExtractor") + val properties = new Properties() + properties.putAll(newParameters.asJava) + // correct partition info + if (properties.getProperty(PARTITIONPATH_FIELD_OPT_KEY, "").isEmpty) { + properties.put(KEYGENERATOR_CLASS_PROP, "org.apache.hudi.keygen.NonpartitionedKeyGenerator") + } + // set HIVE_STYLE_PARTITIONING_OPT_KEY to be true + properties.put(HIVE_STYLE_PARTITIONING_OPT_KEY, "true") + + if (enableHive) { + properties.put(HIVE_SYNC_ENABLED_OPT_KEY, "true") + properties.put(HIVE_USE_JDBC_OPT_KEY, "false") + // correct hive partition info + if (properties.getProperty(PARTITIONPATH_FIELD_OPT_KEY, "").isEmpty) { + properties.put(HIVE_PARTITION_FIELDS_OPT_KEY, "") + properties.put(HIVE_PARTITION_EXTRACTOR_CLASS_OPT_KEY, "org.apache.hudi.hive.NonPartitionedExtractor") + } + } else { + // disable Hive Sync + properties.put(HIVE_SYNC_ENABLED_OPT_KEY, "false") + + } + properties.asScala.toMap + } + + def getTablePathFromRelation(table: LogicalPlan, sparkSession: SparkSession): String = { + getHoodiePropsFromRelation(table, sparkSession).getOrElse("path", "") + } + + /** + * build props form relation + */ + def getHoodiePropsFromRelation(table: LogicalPlan, sparkSession: SparkSession): Map[String, String] = { + table.collect { + case h: HiveTableRelation => + val table = h.asInstanceOf[HiveTableRelation].tableMeta + val db = table.identifier.database.getOrElse("default") + val rawTableName = table.identifier.table + val tableName = if (rawTableName.endsWith("_ro") || rawTableName.endsWith("_rt")) { + rawTableName.substring(0, rawTableName.size - 3) + } else { + rawTableName + } + val savePath = HudiSQLUtils.getTablePath(sparkSession, table) + table.properties ++ Map(HIVE_DATABASE_OPT_KEY -> db, + "inputformat" -> table.storage.inputFormat.getOrElse(""), + HIVE_TABLE_OPT_KEY -> tableName, + "path" -> savePath, "currentTable" -> table.identifier.quotedString) ++ getPropertiesFromTableConfigCache(savePath).asScala.toMap + case l @ LogicalRelation(r: BaseRelation, _, _, _) => + val catalogTable = l.catalogTable + val catalogProp = if (catalogTable.isEmpty) { + Map.empty[String, String] + } else { + val savePath = HudiSQLUtils.getTablePath(sparkSession, catalogTable.get) + val tablePath = if (savePath.endsWith("/*")) { + savePath.dropRight(catalogTable.get.partitionColumnNames.size*2 + 1) + } else { + savePath + } + catalogTable.get.storage.properties ++ Map("currentTable" -> catalogTable.get.identifier.unquotedString, + "path" -> tablePath) ++ getPropertiesFromTableConfigCache(tablePath).asScala.toMap + } + + val relationProp = r match { + case h: HadoopFsRelation => h.options.updated("path", h.options.getOrElse("hoodie.base.path", "")) + case m: MergeOnReadSnapshotRelation => m.optParams.updated("path", m.optParams.getOrElse("hoodie.base.path", "")) + case b: HoodieBootstrapRelation => b.optParams.updated("path", b.optParams.getOrElse("hoodie.base.path", "")) + case _ => Map.empty[String, String] + } + relationProp ++ catalogProp + }.headOption.getOrElse(Map.empty[String, String]) + } + + def getRequredFieldsFromTableConf(tablePath: String): (String, Seq[String]) = { + val tableConf = tableConfigCache.get(tablePath) + val recordKeyFields = tableConf.getProperty(RECORDKEY_FIELD_OPT_KEY).split(",").map(_.trim).filter(!_.isEmpty) + val partitionPathFields = tableConf.getProperty(PARTITIONPATH_FIELD_OPT_KEY).split(",").map(_.trim).filter(!_.isEmpty) + val preCombineField = tableConf.getProperty(PRECOMBINE_FIELD_OPT_KEY).trim + (preCombineField, recordKeyFields ++ partitionPathFields) + } + + def merge( + df: DataFrame, + spark: SparkSession, + tableMeta: Map[String, String], + trySkipIndex: Boolean = true, + enableHive: Boolean = true): Unit = { + val savePath = tableMeta.getOrElse("path", throw new HoodieException("cannot find table Path, pls check your hoodie table!!!")) + val payload = HudiSQLUtils.tableConfigCache.get(savePath).getProperty(PAYLOAD_CLASS_OPT_KEY, DEFAULT_PAYLOAD_OPT_VAL) + + val df2Merge = payload match { + case AWSDMSAVROPAYLOAD => + df.drop("Op").withColumnRenamed(MERGE_MARKER, "Op") + case _ => + val f: (String) => Boolean = {x => {if (x == "D") true else false}} + val markDeleteUdf = udf(f) + df.withColumn(MERGE_MARKER, markDeleteUdf(col(MERGE_MARKER))) + } + update(df2Merge, buildDefaultParameter(tableMeta, enableHive), spark, WriteOperationType.UPSERT, trySkipIndex, enableHive) + } + + def update( + df: DataFrame, + parameters: Map[String, String], + spark: SparkSession, + writeOperationType: WriteOperationType = WriteOperationType.UPSERT, + trySkipIndex: Boolean = true, enableHive: Boolean = true): Unit = { + val tablePath = parameters.get("path").get + + val tableConfig = tableConfigCache.get(tablePath) + tableConfig.put(TABLE_TYPE_OPT_KEY, tableConfig.getProperty("hoodie.table.type")) + val tblName = tableConfig.get("hoodie.table.name").toString + tableConfig.put(HIVE_TABLE_OPT_KEY, tblName) + val dataWriteOptions = parameters ++ addSetProperties(parameters, spark) ++ tableConfig.asScala + + checkWriteOptions(dataWriteOptions, enableHive) + + if (df.schema.exists(f => f.name.endsWith(HoodieRecord.FILENAME_METADATA_FIELD)) && trySkipIndex) { + log.info("try to upsert table skip index") + val par = dataWriteOptions.getOrElse("par", "1500") + upsertSkipIndex(df, dataWriteOptions ++ Map("hoodie.tagging.before.insert" -> "false", + UPSERT_PARALLELISM -> par, + COMBINE_BEFORE_UPSERT_PROP -> "false"), + spark, dataWriteOptions.getOrElse("hoodie.table.name", tblName)) + if (enableHive) { + doSyncToHive(dataWriteOptions, new Path(tablePath), spark.sparkContext.hadoopConfiguration) + } + } else { + log.info("try to upsert table directly") + upsertDirectly(df, (dataWriteOptions ++ Map("hoodie.tagging.before.insert" -> "true")).asJava, writeOperationType, SaveMode.Append, tablePath) + } + } + + def checkWriteOptions(parameters: Map[String, String], enableHive: Boolean = true): Unit = { + def checkNeededOption(option: String): Unit = { + parameters.getOrElse(option, throw new HoodieException(s"cannot find ${option}, pls set it when you create hudi table")) + } + checkNeededOption(PRECOMBINE_FIELD_OPT_KEY) + checkNeededOption(RECORDKEY_FIELD_OPT_KEY) + checkNeededOption(PARTITIONPATH_FIELD_OPT_KEY) + + if (parameters.get(PARTITIONPATH_FIELD_OPT_KEY).isEmpty) { + if (!parameters.get(KEYGENERATOR_CLASS_PROP).equals("org.apache.hudi.keygen.NonpartitionedKeyGenerator")) { + throw new HoodieException(s"hooide.datasource.write.keygenerator.class for NonPartition table " + + s"should set to be org.apache.hudi.keygen.NonPartitionedKeyGenerator") + } + } + // do hive check + if (enableHive) { + val hiveTableName = parameters.getOrElse(HIVE_TABLE_OPT_KEY, "") + if (hiveTableName.isEmpty || hiveTableName.equalsIgnoreCase("unknow")) { + throw new HoodieException(s"find incorret vale ${hiveTableName} for ${HIVE_TABLE_OPT_KEY}") + } + } + + } + + def tableExists(tablePath: String, conf: Configuration): Boolean = { + val basePath = new Path(tablePath) + val fs = basePath.getFileSystem(conf) + val metaPath = new Path(basePath, HoodieTableMetaClient.METAFOLDER_NAME) + fs.exists(metaPath) + } + + /** + * do merge skipping index tag, which is only used by sql + * we can use _hoodie_record_key, _hoodie_partition_path, _hoodie_file_name to build tagged hudi rdd directly + */ + private def upsertSkipIndex( + df: DataFrame, + parameters: Map[String, String], + spark: SparkSession, + tblName: String): Unit = { + + val (structName, nameSpace) = AvroConversionUtils.getAvroRecordNameAndNamespace(tblName) + spark.sparkContext.getConf.registerKryoClasses( + Array(classOf[org.apache.avro.generic.GenericData], + classOf[org.apache.avro.Schema])) + // change mark delete filedStruct + val fixedSchema = { + val last = df.schema.last + StructType(df.schema.dropRight(1)).add(last.name, last.dataType, true) + } + val schema = AvroConversionUtils.convertStructTypeToAvroSchema(df.schema, structName, nameSpace) + spark.sparkContext.getConf.registerAvroSchemas(schema) + + // delete MERGE_MARKER in schema + val fixedAvroSchema = if (fixedSchema.fields.exists(p => p.name.equals(MERGE_MARKER))) { + AvroConversionUtils.convertStructTypeToAvroSchema(StructType(fixedSchema.dropRight(1)), structName, nameSpace) + } else { + schema + } + + log.info(s"Registered avro schema: ${schema.toString(true)}") + // + val keyGenerator = DataSourceUtils.createKeyGenerator(toProperties(parameters)) + // create hoodieRecord directly, insert record is should be considered + val genericRecords: RDD[GenericRecord] = HoodieSparkUtils.createRdd(df, schema, structName, nameSpace) + val combineKey = parameters.get(PRECOMBINE_FIELD_OPT_KEY).get.trim + val hoodieRecords = genericRecords.map { gr => + + val orderingVal = HoodieAvroUtils + .getNestedFieldVal(gr, combineKey, false).asInstanceOf[Comparable[_]] + + val canSetLocation: Boolean = if (gr.get(RECORDKEY_FIELD_OPT_KEY) == null + || gr.get(PARTITIONPATH_FIELD_OPT_KEY) == null + || gr.get(HoodieRecord.COMMIT_TIME_METADATA_FIELD) == null) { + false + } else { + true + } + + val hoodieRecord = if (!canSetLocation) { + if (gr.get(MERGE_MARKER) != null && gr.get(MERGE_MARKER).toString.toBoolean) { + DataSourceUtils.createHoodieRecord(gr, orderingVal, keyGenerator.getKey(gr), "org.apache.hudi.common.model.EmptyHoodieRecordPayload") + } else { + DataSourceUtils.createHoodieRecord(gr, orderingVal, keyGenerator.getKey(gr), parameters(PAYLOAD_CLASS_OPT_KEY)) + } + } else { + DataSourceUtils.createHoodieRecord(gr, + orderingVal, + new HoodieKey(gr.get(RECORDKEY_FIELD_OPT_KEY).toString, gr.get(PARTITIONPATH_FIELD_OPT_KEY).toString), + parameters(PARTITIONPATH_FIELD_OPT_KEY)) + } + + if (canSetLocation) { + hoodieRecord.unseal() + // set location + hoodieRecord.setCurrentLocation( new HoodieRecordLocation(gr.get(HoodieRecord.COMMIT_TIME_METADATA_FIELD).toString + , gr.get(HoodieRecord.FILENAME_METADATA_FIELD).toString.split("_")(0))) + hoodieRecord.seal() + } + + hoodieRecord + }.toJavaRDD() + + // create a HoodieWriteClient $ issue the write + val jsc = new JavaSparkContext(spark.sparkContext) + val path = parameters.get("path") + val basePath = new Path(path.get) + val client = DataSourceUtils.createHoodieClient(jsc, + fixedAvroSchema.toString, path.get, tblName, mapAsJavaMap(parameters - HOODIE_AUTO_COMMIT_PROP)) + .asInstanceOf[SparkRDDWriteClient[HoodieRecordPayload[Nothing]]] + + val instantTime = HoodieActiveTimeline.createNewInstantTime() + val commitActionType = DataSourceUtils.getCommitActionType(WriteOperationType.UPSERT, + if (parameters.getOrElse("hoodie.table.type", "COPY_ON_WRITE") == "COPY_ON_WRITE") HoodieTableType.COPY_ON_WRITE else HoodieTableType.MERGE_ON_READ) + + client.startCommitWithTime(instantTime, commitActionType) + val writeResult = DataSourceUtils.doWriteOperation(client, hoodieRecords, instantTime, WriteOperationType.UPSERT) + + // commit and post commit + commitAndPerformPostOperations(writeResult, + parameters, + client, + HoodieTableMetaClient.builder().setConf(spark.sparkContext.hadoopConfiguration).setBasePath(path.get) + .build().getTableConfig, + jsc, + TableInstantInfo(basePath, instantTime, commitActionType, WriteOperationType.UPSERT)) + } + + private def commitAndPerformPostOperations( + writeResult: HoodieWriteResult, + parameters: Map[String, String], + client: SparkRDDWriteClient[HoodieRecordPayload[Nothing]], + tableConfig: HoodieTableConfig, + jsc: JavaSparkContext, + tableInstantInfo: TableInstantInfo): Unit = { + val errorCount = writeResult.getWriteStatuses.rdd.filter(ws => ws.hasErrors).count() + if (errorCount == 0) { + log.info("No errors. Proceeding to commit the write.") + val metaMap = parameters.filter(kv => kv._1.startsWith(parameters(COMMIT_METADATA_KEYPREFIX_OPT_KEY))) + val commitSuccess = + client.commit(tableInstantInfo.instantTime, writeResult.getWriteStatuses, + org.apache.hudi.common.util.Option.of(new util.HashMap[String, String](mapAsJavaMap(metaMap))), + tableInstantInfo.commitActionType, writeResult.getPartitionToReplaceFileIds) + if (commitSuccess) { + log.info("Commit" + tableInstantInfo.instantTime + " successful!") + } else { + log.info("Commit " + tableInstantInfo.instantTime + " failed!") + } + } else { + log.info(s"${tableInstantInfo.operation} failed with $errorCount errors :") + if (log.isTraceEnabled) { + log.trace("Printing out the top 100 errors") + writeResult.getWriteStatuses.rdd.filter(ws => ws.hasErrors) + .take(100) + .foreach(ws => { + log.trace("Global error :", ws.getGlobalError) + if (ws.getErrors.size() > 0) { + ws.getErrors.asScala.foreach(kt => log.trace(s"Error for key: ${kt._1}", kt._2)) + } + }) + } + } + } + + /** + * do merge directly, just use hoodie dataFrame api + */ + private def upsertDirectly( + df: DataFrame, + options: java.util.Map[String, String], + writeOperationType: WriteOperationType = WriteOperationType.UPSERT, + mode: SaveMode, + savePath: String): Unit = { + val par = options.getOrDefault("par", "1500") + df.write.format("hudi") + .option(BULKINSERT_PARALLELISM, par) + .option(INSERT_PARALLELISM, par) + .option(UPSERT_PARALLELISM, par) + .option(DELETE_PARALLELISM, par) + .options(options) + .option(DataSourceWriteOptions.OPERATION_OPT_KEY, writeOperationType.value()) + .mode(mode) + .save(savePath) + } + + /** + * now just sync hudi table info to hive + * we use hive driver to do sync, maybe it's better to use spark + */ + private def doSyncToHive(parameters: Map[String, String], basePath: Path, hadoopConf: Configuration): Unit = { + log.info("Syncing to Hive Start!!!") + val hiveSyncConfig = buildSyncConfig(basePath, parameters) + val hiveConf = new HiveConf() + val fs = basePath.getFileSystem(hadoopConf) + hiveConf.addResource(fs.getConf) + new HiveSyncTool(hiveSyncConfig, hiveConf, fs).syncHoodieTable() + } + + private def buildSyncConfig(basePath: Path, parameters: Map[String, String]): HiveSyncConfig = { + val hiveSyncConfig: HiveSyncConfig = new HiveSyncConfig() + hiveSyncConfig.basePath = basePath.toString + hiveSyncConfig.baseFileFormat = parameters(HIVE_BASE_FILE_FORMAT_OPT_KEY); + hiveSyncConfig.usePreApacheInputFormat = + parameters.get(HIVE_USE_PRE_APACHE_INPUT_FORMAT_OPT_KEY).exists(r => r.toBoolean) + hiveSyncConfig.databaseName = parameters(HIVE_DATABASE_OPT_KEY) + hiveSyncConfig.tableName = parameters(HIVE_TABLE_OPT_KEY) + hiveSyncConfig.partitionFields = + ListBuffer(parameters(HIVE_PARTITION_FIELDS_OPT_KEY).split(",").map(_.trim).filter(!_.isEmpty).toList: _*).asJava + hiveSyncConfig.partitionValueExtractorClass = parameters(HIVE_PARTITION_EXTRACTOR_CLASS_OPT_KEY) + hiveSyncConfig.useJdbc = false + hiveSyncConfig.supportTimestamp = parameters.get(HIVE_SUPPORT_TIMESTAMP).exists(r => r.toBoolean) + hiveSyncConfig.autoCreateDatabase = parameters.get(HIVE_AUTO_CREATE_DATABASE_OPT_KEY).exists(r => r.toBoolean) + hiveSyncConfig.decodePartition = parameters.getOrElse(URL_ENCODE_PARTITIONING_OPT_KEY, + DEFAULT_URL_ENCODE_PARTITIONING_OPT_VAL).toBoolean + hiveSyncConfig + } + + /** + * user can set some properties by sql statement: set xxxx=xx + * we try to grab some useful property for hudi + */ + private def addSetProperties(parameters: Map[String, String], spark: SparkSession): Map[String, String] = { + val par = spark.sessionState.conf.getConfString("spark.hoodie.shuffle.parallelism", "1500") + parameters ++ spark.sessionState.conf.getAllConfs ++ Map("par" -> par) + } + + def initFirstCommit(spark: SparkSession, schema: StructType, properties: Map[String, String], conf: Configuration, tablePath: String, tableName: String): Unit = { Review comment: please split into two lines for better readability -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. For queries about this service, please contact Infrastructure at: us...@infra.apache.org