ZhennanQin commented on a change in pull request #12530: Implement mkldnn convolution fusion and quantization. URL: https://github.com/apache/incubator-mxnet/pull/12530#discussion_r220034161
########## File path: src/operator/subgraph/mkldnn/mkldnn_conv.cc ########## @@ -0,0 +1,678 @@ +/* +* Licensed to the Apache Software Foundation (ASF) under one +* or more contributor license agreements. See the NOTICE file +* distributed with this work for additional information +* regarding copyright ownership. The ASF licenses this file +* to you under the Apache License, Version 2.0 (the +* "License"); you may not use this file except in compliance +* with the License. You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, +* software distributed under the License is distributed on an +* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +* KIND, either express or implied. See the License for the +* specific language governing permissions and limitations +* under the License. +*/ + +#if MXNET_USE_MKLDNN == 1 + +#include <utility> +#include <vector> +#include <string> +#include "../common.h" +#include "../../nn/mkldnn/mkldnn_base-inl.h" +#include "../../nn/mkldnn/mkldnn_ops-inl.h" +#include "../../quantization/quantization_utils.h" +#include "mkldnn_conv-inl.h" + +namespace mxnet { +namespace op { + +template <typename DType> +static void UpdateConvWeightBias(NDArray *weight, NDArray *bias, bool no_bias, + const NDArray &gamma, const NDArray &beta, + const NDArray &mean, const NDArray &variance, + const BatchNormParam *param) { + // TODO(Zhennan): Handle the case weight is not in dims 4. + NDArray update_weight = NDArray(weight->storage_type(), weight->shape(), + weight->ctx(), true, weight->dtype()); + NDArray update_bias = NDArray(beta.storage_type(), beta.shape(), beta.ctx(), + true, beta.dtype()); + DType *weight_ptr = weight->data().dptr<DType>(); + DType *bias_ptr = no_bias ? nullptr : bias->data().dptr<DType>(); + DType *gamma_ptr = gamma.Reorder2Default().data().dptr<DType>(); + DType *beta_ptr = beta.Reorder2Default().data().dptr<DType>(); + DType *mean_ptr = mean.Reorder2Default().data().dptr<DType>(); + DType *var_ptr = variance.Reorder2Default().data().dptr<DType>(); + DType *update_weight_ptr = update_weight.data().dptr<DType>(); + DType *update_bias_ptr = update_bias.data().dptr<DType>(); + size_t channel = gamma.shape()[0]; + size_t offset = weight->shape()[1] * weight->shape()[2] * weight->shape()[3]; +#pragma omp parallel for num_threads(engine::OpenMP::Get()->GetRecommendedOMPThreadCount()) + for (int c = 0; c < static_cast<int>(channel); ++c) { + DType *p1 = reinterpret_cast<DType *>(weight_ptr + c * offset); + DType *p2 = reinterpret_cast<DType *>(update_weight_ptr + c * offset); + DType alpha = (param->fix_gamma ? static_cast<DType>(1.0f) : gamma_ptr[c]) / + sqrt(var_ptr[c] + param->eps); + + if (bias_ptr) + update_bias_ptr[c] = beta_ptr[c] + alpha * (bias_ptr[c] - mean_ptr[c]); + else + update_bias_ptr[c] = beta_ptr[c] - alpha * mean_ptr[c]; + + for (size_t k = 0; k < offset; ++k) { + p2[k] = p1[k] * alpha; + } + } + *weight = update_weight; + *bias = update_bias; +} + +static inline size_t GetInSumIndex(const MKLDNNConvFusionParam ¶m) { + return 2 + (param.full_conv_param.conv_param.no_bias ? 0 : 1) + + (param.full_conv_param.mkldnn_param.with_bn ? 4 : 0); +} + +template <typename DType> +static void QuantizeConvWeightBias(NDArray *weight, NDArray *bias, + bool has_bias, float data_min, + float data_max, + bool weight_channelwise_scale, + std::vector<float> *weight_scales) { + using red::limits::MaxValue; + using red::limits::MinValue; + DType *weight_ptr = weight->data().dptr<DType>(); + NDArray quantized_weight = NDArray(weight->storage_type(), weight->shape(), + weight->ctx(), true, mshadow::kInt8); + int8_t *quan_weight_ptr = quantized_weight.data().dptr<int8_t>(); + size_t channel = weight->shape()[0]; + + // TODO(Zhennan): Handle the case weight is not in dims 4. + size_t offset = weight->shape()[1] * weight->shape()[2] * weight->shape()[3]; + std::vector<DType> weight_c_min(channel, MaxValue<DType>()); + std::vector<DType> weight_c_max(channel, MinValue<DType>()); +#pragma omp parallel for num_threads(engine::OpenMP::Get()->GetRecommendedOMPThreadCount()) + for (int c = 0; c < static_cast<int>(channel); ++c) { + DType *p1 = weight_ptr + c * offset; + for (size_t k = 0; k < offset; ++k) { + if (weight_c_min[c] > p1[k]) + weight_c_min[c] = p1[k]; + if (weight_c_max[c] < p1[k]) + weight_c_max[c] = p1[k]; + } + } + + if (weight_channelwise_scale) { + weight_scales->resize(channel); +#pragma omp parallel for num_threads(engine::OpenMP::Get()->GetRecommendedOMPThreadCount()) + for (int c = 0; c < static_cast<int>(channel); ++c) { + DType weight_range = MaxAbs(weight_c_min[c], weight_c_max[c]); + weight_scales->at(c) = int8_range / weight_range; + DType *fp_ptr = weight_ptr + c * offset; + int8_t *quan_ptr = quan_weight_ptr + c * offset; + for (size_t k = 0; k < offset; ++k) { + quan_ptr[k] = std::round(weight_scales->at(c) * fp_ptr[k]); + } + } + } else { + DType total_min = weight_c_min[0]; + DType total_max = weight_c_max[0]; + for (size_t c = 0; c < channel; ++c) { + if (total_min > weight_c_min[c]) total_min = weight_c_min[c]; + if (total_max < weight_c_max[c]) total_max = weight_c_max[c]; + } + weight_scales->resize(1); + DType weight_range = MaxAbs(total_min, total_max); + weight_scales->at(0) = int8_range / weight_range; +#pragma omp parallel for num_threads(engine::OpenMP::Get()->GetRecommendedOMPThreadCount()) + for (int c = 0; c < static_cast<int>(channel); ++c) { + DType *fp_ptr = weight_ptr + c * offset; + int8_t *quan_ptr = quan_weight_ptr + c * offset; + for (size_t k = 0; k < offset; ++k) { + quan_ptr[k] = std::round(weight_scales->at(0) * fp_ptr[k]); + } + } + } + + *weight = quantized_weight; + if (has_bias) { + DType *bias_ptr = bias->data().dptr<DType>(); + NDArray quantized_bias = NDArray(bias->storage_type(), bias->shape(), + bias->ctx(), true, mshadow::kInt32); + int32_t *quan_bias_ptr = quantized_bias.data().dptr<int32_t>(); + DType data_scale = uint8_range / MaxAbs(data_min, data_max); + for (size_t c = 0; c < channel; ++c) { + auto weight_scale = + weight_channelwise_scale ? weight_scales->at(c) : weight_scales->at(0); + float bias_scale = weight_scale * data_scale; + quan_bias_ptr[c] = std::round(bias_scale * bias_ptr[c]); + } + *bias = quantized_bias; + } +} + +static void ConvFusionFallBackCompute() { + LOG(FATAL) << "Don't know how to do ConvFusionFallBackCompute!"; +} + +static void ConvolutionFusionComputeExCPU(const MKLDNNConvFullParam &full_param, + const OpContext &ctx, + MKLDNNConvForward *fwd, + const std::vector<NDArray> &inputs, + const std::vector<OpReqType> &req, + const std::vector<NDArray> &outputs) { + if (SupportMKLDNNConv(full_param.conv_param, inputs[0])) { + // MKLDNN_OPCHECK_INIT(false, outputs.size(), inputs, outputs); + MKLDNNConvolutionForwardFullFeature(full_param, ctx, fwd, inputs, req, outputs); + // MKLDNN_OPCHECK_RUN(ConvolutionCompute<cpu>, attrs, ctx, inputs, req, + // outputs); Review comment: Will remove it. ---------------------------------------------------------------- This is an automated message from the Apache Git Service. To respond to the message, please log on GitHub and use the URL above to go to the specific comment. For queries about this service, please contact Infrastructure at: us...@infra.apache.org With regards, Apache Git Services