Cookiee235 opened a new issue, #17310:
URL: https://github.com/apache/tvm/issues/17310

   ### Actual behavior
   
   ```
   Traceback (most recent call last):
     File "/share_container/optfuzz/res/res_ut/res_executions/30_test.py", line 
50, in <module>
       ex = relax.build(mod, target='llvm')
            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
     File "/software/tvm/python/tvm/relax/vm_build.py", line 335, in build
       mod = pipeline(mod)
             ^^^^^^^^^^^^^
     File "/software/tvm/python/tvm/ir/transform.py", line 270, in __call__
       return _ffi_transform_api.RunPass(self, mod)
              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
     File "/software/tvm/python/tvm/_ffi/_ctypes/packed_func.py", line 239, in 
__call__
       raise_last_ffi_error()
     File "/software/tvm/python/tvm/_ffi/base.py", line 481, in 
raise_last_ffi_error
       raise py_err
     File "/software/tvm/python/tvm/relax/pipeline.py", line 101, in _pipeline
       mod = seq(mod)
             ^^^^^^^^
     File "/software/tvm/python/tvm/ir/transform.py", line 270, in __call__
       return _ffi_transform_api.RunPass(self, mod)
              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
     File "/software/tvm/python/tvm/_ffi/_ctypes/packed_func.py", line 239, in 
__call__
       raise_last_ffi_error()
     File "/software/tvm/python/tvm/_ffi/base.py", line 481, in 
raise_last_ffi_error
       raise py_err
   tvm._ffi.base.TVMError: Traceback (most recent call last):
     38: 
tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<tvm::runtime::TypedPackedFunc<tvm::IRModule
 (tvm::transform::Pass, 
tvm::IRModule)>::AssignTypedLambda<tvm::transform::{lambda(tvm::transform::Pass,
 tvm::IRModule)#7}>(tvm::transform::{lambda(tvm::transform::Pass, 
tvm::IRModule)#7}, std::__cxx11::basic_string<char, std::char_traits<char>, 
std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, 
tvm::runtime::TVMRetValue*)#1}> >::Call(tvm::runtime::PackedFuncObj const*, 
std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> 
>, tvm::runtime::TVMRetValue)
     37: tvm::transform::Pass::operator()(tvm::IRModule) const
     36: tvm::transform::Pass::operator()(tvm::IRModule, 
tvm::transform::PassContext const&) const
     35: tvm::transform::SequentialNode::operator()(tvm::IRModule, 
tvm::transform::PassContext const&) const
     34: tvm::transform::Pass::operator()(tvm::IRModule, 
tvm::transform::PassContext const&) const
     33: tvm::transform::ModulePassNode::operator()(tvm::IRModule, 
tvm::transform::PassContext const&) const
     32: _ZN3tvm7runtime13PackedFuncObj9ExtractorINS0_1
     31: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::IRModule, 
tvm::transform::PassContext)>::AssignTypedLambda<tvm::relax::transform::CallTIRRewrite()::{lambda(tvm::IRModule,
 
tvm::transform::PassContext)#1}>(tvm::relax::transform::CallTIRRewrite()::{lambda(tvm::IRModule,
 tvm::transform::PassContext)#1})::{lambda(tvm::runtime::TVMArgs const&, 
tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, 
tvm::runtime::TVMRetValue) const
     30: tvm::relax::CallTIRMutator::Run()
     29: tvm::relax::ExprMutator::VisitExpr(tvm::RelayExpr const&)
     28: tvm::relax::ExprFunctor<tvm::RelayExpr (tvm::RelayExpr 
const&)>::VisitExpr(tvm::RelayExpr const&)
     27: 
_ZZN3tvm5relax11ExprFunctorIFNS_9RelayExprERKS2_EE10InitVTableEvENUlRKNS_7runtime9ObjectRef
     26: tvm::relax::ExprMutator::VisitExpr_(tvm::relax::FunctionNode const*)
     25: tvm::relax::ExprMutator::VisitWithNewScope(tvm::RelayExpr const&, 
tvm::runtime::Optional<tvm::runtime::Array<tvm::relax::Var, void> >)
     24: tvm::relax::ExprMutator::VisitExpr(tvm::RelayExpr const&)
     23: tvm::relax::ExprFunctor<tvm::RelayExpr (tvm::RelayExpr 
const&)>::VisitExpr(tvm::RelayExpr const&)
     22: 
_ZZN3tvm5relax11ExprFunctorIFNS_9RelayExprERKS2_EE10InitVTableEvENUlRKNS_7runtime9ObjectRef
     21: tvm::relax::ExprMutator::VisitExpr_(tvm::relax::SeqExprNode const*)
     20: tvm::relax::ExprMutator::VisitBindingBlock(tvm::relax::BindingBlock 
const&)
     19: 
tvm::relax::ExprMutator::VisitBindingBlock_(tvm::relax::BindingBlockNode const*)
     18: tvm::relax::ExprMutator::VisitBinding(tvm::relax::Binding const&)
     17: tvm::relax::ExprMutator::VisitBinding_(tvm::relax::VarBindingNode 
const*)
     16: _ZZN3tvm5relax11ExprMutator22InitVisitBindingVTabl
     15: tvm::relax::ExprMutator::VisitBinding_(tvm::relax::VarBindingNode 
const*, tvm::relax::CallNode const*)
     14: tvm::relax::ExprMutator::VisitExpr(tvm::RelayExpr const&)
     13: tvm::relax::ExprFunctor<tvm::RelayExpr (tvm::RelayExpr 
const&)>::VisitExpr(tvm::RelayExpr const&)
     12: 
_ZZN3tvm5relax11ExprFunctorIFNS_9RelayExprERKS2_EE10InitVTableEvENUlRKNS_7runtime9ObjectRef
     11: tvm::relax::CallTIRMutator::VisitExpr_(tvm::relax::CallNode const*)
     10: tvm::relax::BlockBuilderImpl::Emit(tvm::RelayExpr, 
tvm::runtime::String)
     9: tvm::relax::BlockBuilderImpl::Emit(tvm::RelayExpr, bool, 
tvm::runtime::String)
     8: tvm::relax::Normalizer::Normalize(tvm::RelayExpr const&)
     7: tvm::relax::ExprFunctor<tvm::RelayExpr (tvm::RelayExpr 
const&)>::VisitExpr(tvm::RelayExpr const&)
     6: 
_ZZN3tvm5relax11ExprFunctorIFNS_9RelayExprERKS2_EE10InitVTableEvENUlRKNS_7runtime9ObjectRef
     5: non-virtual thunk to 
tvm::relax::Normalizer::VisitExpr_(tvm::relax::CallNode const*)
     4: tvm::relax::Normalizer::VisitExpr_(tvm::relax::CallNode const*)
     3: tvm::relax::Normalizer::InferStructInfo(tvm::relax::Call const&)
     2: tvm::relax::DeriveCallRetStructInfo(tvm::relax::FuncStructInfo const&, 
tvm::relax::Call const&, tvm::relax::BlockBuilder const&, tvm::arith::Analyzer*)
     1: tvm::relax::CallRetStructInfoDeriver::Derive(tvm::relax::FuncStructInfo 
const&, tvm::relax::Call const&, tvm::relax::BlockBuilder const&)
     0: tvm::relax::BlockBuilderImpl::ReportFatal(tvm::Diagnostic const&)
     File "/software/tvm/src/relax/ir/block_builder.cc", line 159
   TVMError: Argument 0 type mismatch: expected R.Tensor((64, 64, 56, 56), 
dtype="float32"), given R.Tensor((1, 64, 56, 56), dtype="float32")
   ```
   
   ### Steps to reproduce
   ```
   import tvm
   from tvm import relax
   from tvm.script import ir as I
   from tvm.script import tir as T
   from tvm.script import relax as R
   
   @I.ir_module
   class Module:
       @T.prim_func(private=True)
       def conv2d(data: T.Buffer((T.int64(1), T.int64(64), T.int64(56), 
T.int64(56)), "float32"), weight1: T.Buffer((T.int64(64), T.int64(64), 
T.int64(3), T.int64(3)), "float32"), conv2d_nchw: T.Buffer((T.int64(1), 
T.int64(64), T.int64(56), T.int64(56)), "float32")):
           T.func_attr({"tir.noalias": T.bool(True)})
           # with T.block("root"):
           pad_temp = T.alloc_buffer((T.int64(1), T.int64(64), T.int64(58), 
T.int64(58)))
           for i0, i1, i2, i3 in T.grid(T.int64(1), T.int64(64), T.int64(58), 
T.int64(58)):
               with T.block("pad_temp"):
                   v_i0, v_i1, v_i2, v_i3 = T.axis.remap("SSSS", [i0, i1, i2, 
i3])
                   T.reads(data[v_i0, v_i1, v_i2 - T.int64(1), v_i3 - 
T.int64(1)])
                   T.writes(pad_temp[v_i0, v_i1, v_i2, v_i3])
                   pad_temp[v_i0, v_i1, v_i2, v_i3] = T.if_then_else(T.int64(1) 
<= v_i2 and v_i2 < T.int64(57) and T.int64(1) <= v_i3 and v_i3 < T.int64(57), 
data[v_i0, v_i1, v_i2 - T.int64(1), v_i3 - T.int64(1)], T.float32(0))
           for nn, ff, yy, xx, rc, ry, rx in T.grid(T.int64(1), T.int64(64), 
T.int64(56), T.int64(56), T.int64(64), T.int64(3), T.int64(3)):
               with T.block("conv2d_nchw"):
                   v_nn, v_ff, v_yy, v_xx, v_rc, v_ry, v_rx = 
T.axis.remap("SSSSRRR", [nn, ff, yy, xx, rc, ry, rx])
                   T.reads(pad_temp[v_nn, v_rc, v_yy + v_ry, v_xx + v_rx], 
weight1[v_ff, v_rc, v_ry, v_rx])
                   T.writes(conv2d_nchw[v_nn, v_ff, v_yy, v_xx])
                   with T.init():
                       conv2d_nchw[v_nn, v_ff, v_yy, v_xx] = T.float32(0)
                   conv2d_nchw[v_nn, v_ff, v_yy, v_xx] = conv2d_nchw[v_nn, 
v_ff, v_yy, v_xx] + pad_temp[v_nn, v_rc, v_yy + v_ry, v_xx + v_rx] * 
weight1[v_ff, v_rc, v_ry, v_rx]
   
       @T.prim_func
       def relu(data: T.Buffer((64, 64, 56, 56), "float32"), out: T.Buffer((64, 
64, 56, 56), "float32")):
           # with T.block("root"):
           for ax0, ax1, ax2, ax3 in T.grid(64, 64, 56, 56):
               with T.block("root"):
                   i, j, k, l = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3])
                   T.reads(data[i, j, k, l])
                   T.writes(out[i, j, k, l])
                   out[i, j, k, l] = T.max(data[i, j, k, l], T.float32(0))
   
       @R.function
       def main(data: R.Tensor((1, 64, 56, 56), dtype="float32"), weight1: 
R.Tensor((64, 64, 3, 3), dtype="float32")) -> R.Tensor((64, 64, 56, 56), 
dtype="float32"):
           cls = Module
           with R.dataflow():
               conv1 = R.call_tir(cls.conv2d, (data, weight1), 
out_sinfo=R.Tensor((1, 64, 56, 56), dtype="float32"))
               relu1 = R.call_tir(cls.relu, (conv1,), out_sinfo=R.Tensor((64, 
64, 56, 56), dtype="float32"))
               R.output(relu1)
           return relu1
   
   mod = Module
   mod.show()
   ex = relax.build(mod, target='llvm')
   ```
   
   The given Relax IR passed the IR validity checking but threw a crash when I 
built it. Could you help me review it? Thanks a lot!
   
   CC @Lunderberg @junrushao 
   


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: commits-unsubscr...@tvm.apache.org.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org

Reply via email to