mshr-h commented on code in PR #18247:
URL: https://github.com/apache/tvm/pull/18247#discussion_r2313108424


##########
python/tvm/relax/backend/contrib/example_npu/README.md:
##########
@@ -0,0 +1,220 @@
+<!--- Licensed to the Apache Software Foundation (ASF) under one -->
+<!--- or more contributor license agreements.  See the NOTICE file -->
+<!--- distributed with this work for additional information -->
+<!--- regarding copyright ownership.  The ASF licenses this file -->
+<!--- to you under the Apache License, Version 2.0 (the -->
+<!--- "License"); you may not use this file except in compliance -->
+<!--- with the License.  You may obtain a copy of the License at -->
+
+<!---   http://www.apache.org/licenses/LICENSE-2.0 -->
+
+<!--- Unless required by applicable law or agreed to in writing, -->
+<!--- software distributed under the License is distributed on an -->
+<!--- "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -->
+<!--- KIND, either express or implied.  See the License for the -->
+<!--- specific language governing permissions and limitations -->
+<!--- under the License. -->
+
+# Example NPU Backend
+
+A hands-on example showing how to build a Neural Processing Unit (NPU) backend 
for TVM's Relax framework using Bring Your Own Codegen (BYOC).
+
+## What This Is
+
+This is an educational template that demonstrates real NPU concepts without 
requiring actual NPU hardware. It shows developers how to:
+
+- **Pattern-based partitioning**: Identify and group operations that should 
run on specialized hardware
+- **Memory hierarchy management**: Handle different memory tiers (L0/L1/L2/L3) 
common in NPUs
+- **Automatic tiling**: Break large tensors into smaller chunks that fit in 
on-chip memory
+- **Quantization support**: Handle different data precisions efficiently
+- **BYOC integration**: Connect custom backends to TVM's compilation pipeline
+- **Operator availability checking**: Gracefully handle operators that may not 
be available in all TVM builds
+
+## Quick Start
+
+```python
+import tvm
+from tvm import relax
+from tvm.relax.backend.pattern_registry import get_patterns_with_prefix
+from tvm.relax.transform import FuseOpsByPattern, RunCodegen
+
+# Import to register patterns
+import tvm.relax.backend.contrib.example_npu
+
+# Get available patterns
+patterns = get_patterns_with_prefix("example_npu")
+print(f"Available patterns: {[p.name for p in patterns]}")
+
+# Your model gets automatically partitioned
+# Operations matching patterns get fused into "Composite" functions
+# Those get lowered to the example NPU backend
+```
+
+The snippet above shows how to discover registered patterns. A minimal 
runnable example that demonstrates the BYOC flow (partition -> merge -> 
codegen) using the example test module looks like this:
+
+```python
+# This imports the example module used in the tests. Importing the test
+# module path directly works when running from the repo root (pytest does
+# this automatically).
+from tests.python.contrib.test_example_npu import MatmulReLU
+from tvm.relax.backend.pattern_registry import get_patterns_with_prefix
+from tvm.relax.transform import FuseOpsByPattern, MergeCompositeFunctions, 
RunCodegen
+import tvm.relax.backend.contrib.example_npu  # registers patterns
+
+mod = MatmulReLU
+patterns = get_patterns_with_prefix("example_npu")
+
+# Apply partitioning and codegen annotation
+mod = FuseOpsByPattern(patterns, bind_constants=False, 
annotate_codegen=True)(mod)
+mod = MergeCompositeFunctions()(mod)
+mod = RunCodegen()(mod)
+
+print(mod)
+```
+
+A compact visualization of the BYOC flow:
+
+```
+Model source (Relax)
+       │
+       ▼
+Pattern-based partition (FuseOpsByPattern)
+       │
+       ▼
+Composite functions (MergeCompositeFunctions)
+       │
+       ▼
+Lower/Codegen for example NPU (RunCodegen / relax.ext.example_npu)
+       │
+       ▼
+Runtime dispatch to NPU runtime (runtime.ExampleNPUJSONRuntimeCreate)
+```
+
+## Supported Operations
+
+The backend recognizes these common neural network patterns:
+
+### Core Operations (always available)
+- `example_npu.dense` - Dense/fully connected layers
+- `example_npu.matmul` - Matrix multiplication operations
+- `example_npu.conv1d` - 1D convolution for sequence processing
+- `example_npu.conv2d` - 2D convolution for image processing
+- `example_npu.depthwise_conv2d` - Depthwise separable convolutions
+- `example_npu.max_pool2d` - 2D max pooling
+- `example_npu.avg_pool2d` - 2D average pooling
+- `example_npu.batch_norm` - Batch normalization
+
+### Activation Functions (availability depends on TVM build)
+- `example_npu.relu` - ReLU activation
+- `example_npu.relu6` - ReLU6 activation (if available)
+- `example_npu.sigmoid` - Sigmoid activation (if available)
+- `example_npu.tanh` - Hyperbolic tangent (if available)
+- `example_npu.gelu` - Gaussian Error Linear Unit (if available)
+
+### Element-wise Operations
+- `example_npu.add` - Element-wise addition
+- `example_npu.multiply` - Element-wise multiplication
+- `example_npu.subtract` - Element-wise subtraction
+- `example_npu.divide` - Element-wise division
+
+### Quantization Support
+- `example_npu.quantize` - Quantization operations (if available)
+- `example_npu.dequantize` - Dequantization operations (if available)
+
+### Fused Patterns
+- `example_npu.conv2d_relu_fused` - Optimized Conv2D+ReLU fusion
+
+**Note**: Some operators may not be available in all TVM builds. The backend 
automatically skips registration for unavailable operators.
+
+## Files
+
+### Backend Implementation
+- `patterns.py` - Defines which operations get fused together, along with 
pattern metadata and architectural annotations used by the partitioner. 
Includes operator availability checking and NPU-specific constraints.
+- `__init__.py` - Registers the backend and its BYOC entry points with TVM so 
the compiler can discover and use the example NPU.
+
+### Runtime Implementation
+- `src/runtime/contrib/example_npu/example_npu_runtime.cc` - C++ runtime 
implementation that handles JSON-based graph execution for the NPU backend.
+
+### Tests and Examples
+- `tests/python/contrib/test_example_npu.py` - Comprehensive test suite 
containing example IRModules (e.g. `MatmulReLU`, `Conv2dReLU`) and 
demonstrating the complete BYOC flow from pattern registration to runtime 
execution.
+
+## Status / Build
+
+- The example backend is an educational, CPU-backed emulation. It does not 
require real NPU hardware.
+- The backend includes robust operator availability checking - patterns are 
only registered for operators that exist in the current TVM build.
+- Tests and runtime features are skipped automatically when the example 
codegen/runtime are not built into TVM. The test checks for the presence of 
these global functions before running:
+
+```python
+import tvm
+has_codegen = tvm.get_global_func("relax.ext.example_npu", True)
+has_runtime = tvm.get_global_func("runtime.ExampleNPUJSONRuntimeCreate", True)
+has_example_npu = has_codegen and has_runtime
+```
+
+If `has_example_npu` is False, tests are skipped. This ensures compatibility 
across different TVM build configurations.
+
+## Testing
+
+Run the tests to see it in action:
+
+```bash
+pytest tests/python/contrib/test_example_npu.py -v
+```
+
+Tests are skipped if the backend isn't built — see the test file for the exact 
runtime/codegen checks. Running `pytest` from the repository root ensures 
imports like `tests.python.contrib.test_example_npu` resolve correctly.
+
+The test suite includes:
+- Pattern registration verification (checks that core patterns are available)
+- Graph partitioning validation (ensures operations get grouped correctly)
+- End-to-end execution testing (verifies runtime integration)
+- Operator availability testing (graceful handling of missing operators)
+
+### Example output
+
+When you run the quick-start snippet or the test, you should see output 
similar to the following (truncated for brevity):
+
+```
+Available patterns: ['example_npu.dense', 'example_npu.matmul', 
'example_npu.conv1d', 'example_npu.conv2d', 'example_npu.depthwise_conv2d', 
'example_npu.max_pool2d', 'example_npu.avg_pool2d', 'example_npu.batch_norm', 
'example_npu.relu', 'example_npu.add', 'example_npu.multiply', 
'example_npu.conv2d_relu_fused']
+
+Relax IRModule
+def @main(...) -> ...
+       %0 = call_extern("relax.ext.example_npu", ...)
+
+# composite functions
+def @composite_0(...) /* Composite */ = ...
+```
+
+This shows the registered patterns and that matched subgraphs were turned into 
composite functions and lowered to the example NPU codegen/runtime.
+
+## Key Features Demonstrated
+
+### NPU Architectural Concepts
+- **Multi-tier memory hierarchy**: SRAM (256KB), CMX (512KB), and DRAM 
management
+- **Tiling constraints**: 32x32 tiles with 16-element vectors for optimal NPU 
utilization
+- **Quantization support**: INT8/INT16 for inference acceleration, mixed 
precision handling
+- **Specialized execution units**: Matrix engines (16x16), vector units 
(64-wide), pooling units
+- **Power management**: Support for different power modes (high_performance, 
balanced, low_power)
+
+### Pattern Matching Features
+- **Operator availability detection**: Gracefully handles missing operators in 
different TVM builds
+- **Memory constraint checking**: Validates tensor sizes against NPU memory 
limits
+- **Fusion opportunities**: Identifies conv+activation and other beneficial 
fusions
+- **Layout preferences**: NHWC channel-last layouts preferred by NPUs
+
+### Error Handling
+- **Robust exception handling**: Uses specific `TVMError` instead of generic 
exceptions
+- **Graceful degradation**: Continues operation when optional operators are 
unavailable
+- **Comprehensive testing**: Validates both successful cases and error 
conditions
+
+## Context

Review Comment:
   It would be better to place this chapter at the beginning of the text so we 
can understand the motivation behind the NPU integration.



##########
src/runtime/contrib/example_npu/example_npu_runtime.cc:
##########


Review Comment:
   Doesn't this have to be included in the CMake source list?
   And I guess we need to define something like `USE_EXAMPLE_NPU_RUNTIME` and 
`USE_EXAMPLE_NPU_CODEGEN` for cmake.



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to