This change adds automatic table references to the docs. The
table numbers in the generated Html and PDF docs are now
automatically numbered based on section.
Requires Sphinx >= 1.3.
This change:
* Adds a RST table:: directive to each table caption.
* Indents the tables to the required directive level.
Signed-off-by: John McNamara <john.mcnamara at intel.com>
---
doc/guides/prog_guide/index.rst | 70 +-
doc/guides/prog_guide/packet_framework.rst | 1124 +++++++++++------------
doc/guides/prog_guide/qos_framework.rst | 1340 ++++++++++++++--------------
doc/guides/sample_app_ug/index.rst | 6 +-
doc/guides/sample_app_ug/qos_metering.rst | 46 +-
doc/guides/sample_app_ug/qos_scheduler.rst | 46 +-
doc/guides/sample_app_ug/test_pipeline.rst | 302 +++----
7 files changed, 1466 insertions(+), 1468 deletions(-)
diff --git a/doc/guides/prog_guide/index.rst b/doc/guides/prog_guide/index.rst
index 84a657e..3295661 100644
--- a/doc/guides/prog_guide/index.rst
+++ b/doc/guides/prog_guide/index.rst
@@ -174,72 +174,70 @@ Programmer's Guide
**Tables**
-:ref:`Table 1. Packet Processing Pipeline Implementing QoS <pg_table_1>`
+:numref:`table_qos_1` :ref:`table_qos_1`
-:ref:`Table 2. Infrastructure Blocks Used by the Packet Processing Pipeline
<pg_table_2>`
+:numref:`table_qos_2` :ref:`table_qos_2`
-:ref:`Table 3. Port Scheduling Hierarchy <pg_table_3>`
+:numref:`table_qos_3` :ref:`table_qos_3`
-:ref:`Table 4. Scheduler Internal Data Structures per Port <pg_table_4>`
+:numref:`table_qos_4` :ref:`table_qos_4`
-:ref:`Table 5. Ethernet Frame Overhead Fields <pg_table_5>`
+:numref:`table_qos_5` :ref:`table_qos_5`
-:ref:`Table 6. Token Bucket Generic Operations <pg_table_6>`
+:numref:`table_qos_6` :ref:`table_qos_6`
-:ref:`Table 7. Token Bucket Generic Parameters <pg_table_7>`
+:numref:`table_qos_7` :ref:`table_qos_7`
-:ref:`Table 8. Token Bucket Persistent Data Structure <pg_table_8>`
+:numref:`table_qos_8` :ref:`table_qos_8`
-:ref:`Table 9. Token Bucket Operations <pg_table_9>`
+:numref:`table_qos_9` :ref:`table_qos_9`
-:ref:`Table 10. Subport/Pipe Traffic Class Upper Limit Enforcement Persistent
Data Structure <pg_table_10>`
+:numref:`table_qos_10` :ref:`table_qos_10`
-:ref:`Table 11. Subport/Pipe Traffic Class Upper Limit Enforcement Operations
<pg_table_11>`
+:numref:`table_qos_11` :ref:`table_qos_11`
-:ref:`Table 12. Weighted Round Robin (WRR) <pg_table_12>`
+:numref:`table_qos_12` :ref:`table_qos_12`
-:ref:`Table 13. Subport Traffic Class Oversubscription <pg_table_13>`
+:numref:`table_qos_13` :ref:`table_qos_13`
-:ref:`Table 14. Watermark Propagation from Subport Level to Member Pipes at
the Beginning of Each Traffic Class Upper Limit Enforcement Period
<pg_table_14>`
+:numref:`table_qos_14` :ref:`table_qos_14`
-:ref:`Table 15. Watermark Calculation <pg_table_15>`
+:numref:`table_qos_15` :ref:`table_qos_15`
-:ref:`Table 16. RED Configuration Parameters <pg_table_16>`
+:numref:`table_qos_16` :ref:`table_qos_16`
-:ref:`Table 17. Relative Performance of Alternative Approaches <pg_table_17>`
+:numref:`table_qos_17` :ref:`table_qos_17`
-:ref:`Table 18. RED Configuration Corresponding to RED Configuration File
<pg_table_18>`
+:numref:`table_qos_18` :ref:`table_qos_18`
-:ref:`Table 19. Port types <pg_table_19>`
+:numref:`table_qos_19` :ref:`table_qos_19`
-:ref:`Table 20. Port abstract interface <pg_table_20>`
+:numref:`table_qos_20` :ref:`table_qos_20`
-:ref:`Table 21. Table types <pg_table_21>`
+:numref:`table_qos_21` :ref:`table_qos_21`
-:ref:`Table 29. Table Abstract Interface <pg_table_29_1>`
+:numref:`table_qos_22` :ref:`table_qos_22`
-:ref:`Table 22. Configuration parameters common for all hash table types
<pg_table_22>`
+:numref:`table_qos_23` :ref:`table_qos_23`
-:ref:`Table 23. Configuration parameters specific to extendible bucket hash
table <pg_table_23>`
+:numref:`table_qos_24` :ref:`table_qos_24`
-:ref:`Table 24. Configuration parameters specific to pre-computed key
signature hash table <pg_table_24>`
+:numref:`table_qos_25` :ref:`table_qos_25`
-:ref:`Table 25. The main large data structures (arrays) used for configurable
key size hash tables <pg_table_25>`
+:numref:`table_qos_26` :ref:`table_qos_26`
-:ref:`Table 26. Field description for bucket array entry (configurable key
size hash tables) <pg_table_26>`
+:numref:`table_qos_27` :ref:`table_qos_27`
-:ref:`Table 27. Description of the bucket search pipeline stages (configurable
key size hash tables) <pg_table_27>`
+:numref:`table_qos_28` :ref:`table_qos_28`
-:ref:`Table 28. Lookup tables for match, match_many, match_pos <pg_table_28>`
+:numref:`table_qos_29` :ref:`table_qos_29`
-:ref:`Table 29. Collapsed lookup tables for match, match_many and match_pos
<pg_table_29>`
+:numref:`table_qos_30` :ref:`table_qos_30`
-:ref:`Table 30. The main large data structures (arrays) used for 8-byte and
16-byte key size hash tables <pg_table_30>`
+:numref:`table_qos_31` :ref:`table_qos_31`
-:ref:`Table 31. Field description for bucket array entry (8-byte and 16-byte
key hash tables) <pg_table_31>`
+:numref:`table_qos_32` :ref:`table_qos_32`
-:ref:`Table 32. Description of the bucket search pipeline stages (8-byte and
16-byte key hash tables) <pg_table_32>`
+:numref:`table_qos_33` :ref:`table_qos_33`
-:ref:`Table 33. Next hop actions (reserved) <pg_table_33>`
-
-:ref:`Table 34. User action examples <pg_table_34>`
+:numref:`table_qos_34` :ref:`table_qos_34`
diff --git a/doc/guides/prog_guide/packet_framework.rst
b/doc/guides/prog_guide/packet_framework.rst
index 42bbbaa..1b88622 100644
--- a/doc/guides/prog_guide/packet_framework.rst
+++ b/doc/guides/prog_guide/packet_framework.rst
@@ -84,47 +84,47 @@ Port Types
Table 19 is a non-exhaustive list of ports that can be implemented with the
Packet Framework.
-.. _pg_table_19:
-
-**Table 19 Port Types**
-
-+---+------------------+---------------------------------------------------------------------------------------+
-| # | Port type | Description
|
-| | |
|
-+===+==================+=======================================================================================+
-| 1 | SW ring | SW circular buffer used for message passing between
the application threads. Uses |
-| | | the DPDK rte_ring primitive. Expected to be the most
commonly used type of |
-| | | port.
|
-| | |
|
-+---+------------------+---------------------------------------------------------------------------------------+
-| 2 | HW ring | Queue of buffer descriptors used to interact with
NIC, switch or accelerator ports. |
-| | | For NIC ports, it uses the DPDK rte_eth_rx_queue or
rte_eth_tx_queue |
-| | | primitives.
|
-| | |
|
-+---+------------------+---------------------------------------------------------------------------------------+
-| 3 | IP reassembly | Input packets are either IP fragments or complete IP
datagrams. Output packets are |
-| | | complete IP datagrams.
|
-| | |
|
-+---+------------------+---------------------------------------------------------------------------------------+
-| 4 | IP fragmentation | Input packets are jumbo (IP datagrams with length
bigger than MTU) or non-jumbo |
-| | | packets. Output packets are non-jumbo packets.
|
-| | |
|
-+---+------------------+---------------------------------------------------------------------------------------+
-| 5 | Traffic manager | Traffic manager attached to a specific NIC output
port, performing congestion |
-| | | management and hierarchical scheduling according to
pre-defined SLAs. |
-| | |
|
-+---+------------------+---------------------------------------------------------------------------------------+
-| 6 | KNI | Send/receive packets to/from Linux kernel space.
|
-| | |
|
-+---+------------------+---------------------------------------------------------------------------------------+
-| 7 | Source | Input port used as packet generator. Similar to Linux
kernel /dev/zero character |
-| | | device.
|
-| | |
|
-+---+------------------+---------------------------------------------------------------------------------------+
-| 8 | Sink | Output port used to drop all input packets. Similar
to Linux kernel /dev/null |
-| | | character device.
|
-| | |
|
-+---+------------------+---------------------------------------------------------------------------------------+
+.. _table_qos_19:
+
+.. table:: Port Types
+
+
+---+------------------+---------------------------------------------------------------------------------------+
+ | # | Port type | Description
|
+ | | |
|
+
+===+==================+=======================================================================================+
+ | 1 | SW ring | SW circular buffer used for message passing
between the application threads. Uses |
+ | | | the DPDK rte_ring primitive. Expected to be the
most commonly used type of |
+ | | | port.
|
+ | | |
|
+
+---+------------------+---------------------------------------------------------------------------------------+
+ | 2 | HW ring | Queue of buffer descriptors used to interact with
NIC, switch or accelerator ports. |
+ | | | For NIC ports, it uses the DPDK rte_eth_rx_queue
or rte_eth_tx_queue |
+ | | | primitives.
|
+ | | |
|
+
+---+------------------+---------------------------------------------------------------------------------------+
+ | 3 | IP reassembly | Input packets are either IP fragments or complete
IP datagrams. Output packets are |
+ | | | complete IP datagrams.
|
+ | | |
|
+
+---+------------------+---------------------------------------------------------------------------------------+
+ | 4 | IP fragmentation | Input packets are jumbo (IP datagrams with length
bigger than MTU) or non-jumbo |
+ | | | packets. Output packets are non-jumbo packets.
|
+ | | |
|
+
+---+------------------+---------------------------------------------------------------------------------------+
+ | 5 | Traffic manager | Traffic manager attached to a specific NIC output
port, performing congestion |
+ | | | management and hierarchical scheduling according
to pre-defined SLAs. |
+ | | |
|
+
+---+------------------+---------------------------------------------------------------------------------------+
+ | 6 | KNI | Send/receive packets to/from Linux kernel space.
|
+ | | |
|
+
+---+------------------+---------------------------------------------------------------------------------------+
+ | 7 | Source | Input port used as packet generator. Similar to
Linux kernel /dev/zero character |
+ | | | device.
|
+ | | |
|
+
+---+------------------+---------------------------------------------------------------------------------------+
+ | 8 | Sink | Output port used to drop all input packets.
Similar to Linux kernel /dev/null |
+ | | | character device.
|
+ | | |
|
+
+---+------------------+---------------------------------------------------------------------------------------+
Port Interface
~~~~~~~~~~~~~~
@@ -134,29 +134,29 @@ Each input/output port is required to implement an
abstract interface that
defines the initialization and run-time operation of the port.
The port abstract interface is described in.
-.. _pg_table_20:
-
-**Table 20 Port Abstract Interface**
-
-+---+----------------+-----------------------------------------------------------------------------------------+
-| # | Port Operation | Description
|
-| | |
|
-+===+================+=========================================================================================+
-| 1 | Create | Create the low-level port object (e.g. queue). Can
internally allocate memory. |
-| | |
|
-+---+----------------+-----------------------------------------------------------------------------------------+
-| 2 | Free | Free the resources (e.g. memory) used by the low-level
port object. |
-| | |
|
-+---+----------------+-----------------------------------------------------------------------------------------+
-| 3 | RX | Read a burst of input packets. Non-blocking operation.
Only defined for input ports. |
-| | |
|
-+---+----------------+-----------------------------------------------------------------------------------------+
-| 4 | TX | Write a burst of input packets. Non-blocking operation.
Only defined for output ports. |
-| | |
|
-+---+----------------+-----------------------------------------------------------------------------------------+
-| 5 | Flush | Flush the output buffer. Only defined for output ports.
|
-| | |
|
-+---+----------------+-----------------------------------------------------------------------------------------+
+.. _table_qos_20:
+
+.. table:: 20 Port Abstract Interface
+
+
+---+----------------+-----------------------------------------------------------------------------------------+
+ | # | Port Operation | Description
|
+ | | |
|
+
+===+================+=========================================================================================+
+ | 1 | Create | Create the low-level port object (e.g. queue). Can
internally allocate memory. |
+ | | |
|
+
+---+----------------+-----------------------------------------------------------------------------------------+
+ | 2 | Free | Free the resources (e.g. memory) used by the
low-level port object. |
+ | | |
|
+
+---+----------------+-----------------------------------------------------------------------------------------+
+ | 3 | RX | Read a burst of input packets. Non-blocking
operation. Only defined for input ports. |
+ | | |
|
+
+---+----------------+-----------------------------------------------------------------------------------------+
+ | 4 | TX | Write a burst of input packets. Non-blocking
operation. Only defined for output ports. |
+ | | |
|
+
+---+----------------+-----------------------------------------------------------------------------------------+
+ | 5 | Flush | Flush the output buffer. Only defined for output
ports. |
+ | | |
|
+
+---+----------------+-----------------------------------------------------------------------------------------+
Table Library Design
--------------------
@@ -164,71 +164,71 @@ Table Library Design
Table Types
~~~~~~~~~~~
-.. _pg_table_21:
-
Table 21 is a non-exhaustive list of types of tables that can be implemented
with the Packet Framework.
-**Table 21 Table Types**
-
-+---+----------------------------+-----------------------------------------------------------------------------+
-| # | Table Type | Description
|
-| | |
|
-+===+============================+=============================================================================+
-| 1 | Hash table | Lookup key is n-tuple based.
|
-| | |
|
-| | | Typically, the lookup key is hashed to
produce a signature that is used to |
-| | | identify a bucket of entries where the
lookup key is searched next. |
-| | |
|
-| | | The signature associated with the lookup
key of each input packet is either |
-| | | read from the packet descriptor
(pre-computed signature) or computed at |
-| | | table lookup time.
|
-| | |
|
-| | | The table lookup, add entry and delete
entry operations, as well as any |
-| | | other pipeline block that pre-computes the
signature all have to use the |
-| | | same hashing algorithm to generate the
signature. |
-| | |
|
-| | | Typically used to implement flow
classification tables, ARP caches, routing |
-| | | table for tunnelling protocols, etc.
|
-| | |
|
-+---+----------------------------+-----------------------------------------------------------------------------+
-| 2 | Longest Prefix Match (LPM) | Lookup key is the IP address.
|
-| | |
|
-| | | Each table entries has an associated IP
prefix (IP and depth). |
-| | |
|
-| | | The table lookup operation selects the IP
prefix that is matched by the |
-| | | lookup key; in case of multiple matches,
the entry with the longest prefix |
-| | | depth wins.
|
-| | |
|
-| | | Typically used to implement IP routing
tables. |
-| | |
|
-+---+----------------------------+-----------------------------------------------------------------------------+
-| 3 | Access Control List (ACLs) | Lookup key is 7-tuple of two VLAN/MPLS
labels, IP destination address, |
-| | | IP source addresses, L4 protocol, L4
destination port, L4 source port. |
-| | |
|
-| | | Each table entry has an associated ACL and
priority. The ACL contains bit |
-| | | masks for the VLAN/MPLS labels, IP prefix
for IP destination address, IP |
-| | | prefix for IP source addresses, L4 protocol
and bitmask, L4 destination |
-| | | port and bit mask, L4 source port and bit
mask. |
-| | |
|
-| | | The table lookup operation selects the ACL
that is matched by the lookup |
-| | | key; in case of multiple matches, the entry
with the highest priority wins. |
-| | |
|
-| | | Typically used to implement rule databases
for firewalls, etc. |
-| | |
|
-+---+----------------------------+-----------------------------------------------------------------------------+
-| 4 | Pattern matching search | Lookup key is the packet payload.
|
-| | |
|
-| | | Table is a database of patterns, with each
pattern having a priority |
-| | | assigned.
|
-| | |
|
-| | | The table lookup operation selects the
patterns that is matched by the |
-| | | input packet; in case of multiple matches,
the matching pattern with the |
-| | | highest priority wins.
|
-| | |
|
-+---+----------------------------+-----------------------------------------------------------------------------+
-| 5 | Array | Lookup key is the table entry index itself.
|
-| | |
|
-+---+----------------------------+-----------------------------------------------------------------------------+
+.. _table_qos_21:
+
+.. table:: Table Types
+
+
+---+----------------------------+-----------------------------------------------------------------------------+
+ | # | Table Type | Description
|
+ | | |
|
+
+===+============================+=============================================================================+
+ | 1 | Hash table | Lookup key is n-tuple based.
|
+ | | |
|
+ | | | Typically, the lookup key is hashed to
produce a signature that is used to |
+ | | | identify a bucket of entries where the
lookup key is searched next. |
+ | | |
|
+ | | | The signature associated with the lookup
key of each input packet is either |
+ | | | read from the packet descriptor
(pre-computed signature) or computed at |
+ | | | table lookup time.
|
+ | | |
|
+ | | | The table lookup, add entry and delete
entry operations, as well as any |
+ | | | other pipeline block that pre-computes
the signature all have to use the |
+ | | | same hashing algorithm to generate the
signature. |
+ | | |
|
+ | | | Typically used to implement flow
classification tables, ARP caches, routing |
+ | | | table for tunnelling protocols, etc.
|
+ | | |
|
+
+---+----------------------------+-----------------------------------------------------------------------------+
+ | 2 | Longest Prefix Match (LPM) | Lookup key is the IP address.
|
+ | | |
|
+ | | | Each table entries has an associated IP
prefix (IP and depth). |
+ | | |
|
+ | | | The table lookup operation selects the
IP prefix that is matched by the |
+ | | | lookup key; in case of multiple matches,
the entry with the longest prefix |
+ | | | depth wins.
|
+ | | |
|
+ | | | Typically used to implement IP routing
tables. |
+ | | |
|
+
+---+----------------------------+-----------------------------------------------------------------------------+
+ | 3 | Access Control List (ACLs) | Lookup key is 7-tuple of two VLAN/MPLS
labels, IP destination address, |
+ | | | IP source addresses, L4 protocol, L4
destination port, L4 source port. |
+ | | |
|
+ | | | Each table entry has an associated ACL
and priority. The ACL contains bit |
+ | | | masks for the VLAN/MPLS labels, IP
prefix for IP destination address, IP |
+ | | | prefix for IP source addresses, L4
protocol and bitmask, L4 destination |
+ | | | port and bit mask, L4 source port and
bit mask. |
+ | | |
|
+ | | | The table lookup operation selects the
ACL that is matched by the lookup |
+ | | | key; in case of multiple matches, the
entry with the highest priority wins. |
+ | | |
|
+ | | | Typically used to implement rule
databases for firewalls, etc. |
+ | | |
|
+
+---+----------------------------+-----------------------------------------------------------------------------+
+ | 4 | Pattern matching search | Lookup key is the packet payload.
|
+ | | |
|
+ | | | Table is a database of patterns, with
each pattern having a priority |
+ | | | assigned.
|
+ | | |
|
+ | | | The table lookup operation selects the
patterns that is matched by the |
+ | | | input packet; in case of multiple
matches, the matching pattern with the |
+ | | | highest priority wins.
|
+ | | |
|
+
+---+----------------------------+-----------------------------------------------------------------------------+
+ | 5 | Array | Lookup key is the table entry index
itself. |
+ | | |
|
+
+---+----------------------------+-----------------------------------------------------------------------------+
Table Interface
~~~~~~~~~~~~~~~
@@ -237,40 +237,40 @@ Each table is required to implement an abstract interface
that defines the initi
and run-time operation of the table.
The table abstract interface is described in Table 29.
-.. _pg_table_29_1:
-
-**Table 29 Table Abstract Interface**
-
-+---+-----------------+----------------------------------------------------------------------------------------+
-| # | Table operation | Description
|
-| | |
|
-+===+=================+========================================================================================+
-| 1 | Create | Create the low-level data structures of the lookup
table. Can internally allocate |
-| | | memory.
|
-| | |
|
-+---+-----------------+----------------------------------------------------------------------------------------+
-| 2 | Free | Free up all the resources used by the lookup table.
|
-| | |
|
-+---+-----------------+----------------------------------------------------------------------------------------+
-| 3 | Add entry | Add new entry to the lookup table.
|
-| | |
|
-+---+-----------------+----------------------------------------------------------------------------------------+
-| 4 | Delete entry | Delete specific entry from the lookup table.
|
-| | |
|
-+---+-----------------+----------------------------------------------------------------------------------------+
-| 5 | Lookup | Look up a burst of input packets and return a bit mask
specifying the result of the |
-| | | lookup operation for each packet: a set bit signifies
lookup hit for the corresponding |
-| | | packet, while a cleared bit a lookup miss.
|
-| | |
|
-| | | For each lookup hit packet, the lookup operation also
returns a pointer to the table |
-| | | entry that was hit, which contains the actions to be
applied on the packet and any |
-| | | associated metadata.
|
-| | |
|
-| | | For each lookup miss packet, the actions to be applied
on the packet and any |
-| | | associated metadata are specified by the default table
entry preconfigured for lookup |
-| | | miss.
|
-| | |
|
-+---+-----------------+----------------------------------------------------------------------------------------+
+.. _table_qos_29_1:
+
+.. table:: Table Abstract Interface
+
+
+---+-----------------+----------------------------------------------------------------------------------------+
+ | # | Table operation | Description
|
+ | | |
|
+
+===+=================+========================================================================================+
+ | 1 | Create | Create the low-level data structures of the lookup
table. Can internally allocate |
+ | | | memory.
|
+ | | |
|
+
+---+-----------------+----------------------------------------------------------------------------------------+
+ | 2 | Free | Free up all the resources used by the lookup table.
|
+ | | |
|
+
+---+-----------------+----------------------------------------------------------------------------------------+
+ | 3 | Add entry | Add new entry to the lookup table.
|
+ | | |
|
+
+---+-----------------+----------------------------------------------------------------------------------------+
+ | 4 | Delete entry | Delete specific entry from the lookup table.
|
+ | | |
|
+
+---+-----------------+----------------------------------------------------------------------------------------+
+ | 5 | Lookup | Look up a burst of input packets and return a bit
mask specifying the result of the |
+ | | | lookup operation for each packet: a set bit
signifies lookup hit for the corresponding |
+ | | | packet, while a cleared bit a lookup miss.
|
+ | | |
|
+ | | | For each lookup hit packet, the lookup operation
also returns a pointer to the table |
+ | | | entry that was hit, which contains the actions to
be applied on the packet and any |
+ | | | associated metadata.
|
+ | | |
|
+ | | | For each lookup miss packet, the actions to be
applied on the packet and any |
+ | | | associated metadata are specified by the default
table entry preconfigured for lookup |
+ | | | miss.
|
+ | | |
|
+
+---+-----------------+----------------------------------------------------------------------------------------+
Hash Table Design
@@ -391,38 +391,38 @@ The MAC address of the next hop station becomes the
destination MAC address of t
Hash Table Types
^^^^^^^^^^^^^^^^
-.. _pg_table_22:
-
Table 22 lists the hash table configuration parameters shared by all different
hash table types.
-**Table 22 Configuration Parameters Common for All Hash Table Types**
-
-+---+---------------------------+------------------------------------------------------------------------------+
-| # | Parameter | Details
|
-| | |
|
-+===+===========================+==============================================================================+
-| 1 | Key size | Measured as number of bytes. All keys have
the same size. |
-| | |
|
-+---+---------------------------+------------------------------------------------------------------------------+
-| 2 | Key value (key data) size | Measured as number of bytes.
|
-| | |
|
-+---+---------------------------+------------------------------------------------------------------------------+
-| 3 | Number of buckets | Needs to be a power of two.
|
-| | |
|
-+---+---------------------------+------------------------------------------------------------------------------+
-| 4 | Maximum number of keys | Needs to be a power of two.
|
-| | |
|
-+---+---------------------------+------------------------------------------------------------------------------+
-| 5 | Hash function | Examples: jhash, CRC hash, etc.
|
-| | |
|
-+---+---------------------------+------------------------------------------------------------------------------+
-| 6 | Hash function seed | Parameter to be passed to the hash function.
|
-| | |
|
-+---+---------------------------+------------------------------------------------------------------------------+
-| 7 | Key offset | Offset of the lookup key byte array within
the packet meta-data stored in |
-| | | the packet buffer.
|
-| | |
|
-+---+---------------------------+------------------------------------------------------------------------------+
+.. _table_qos_22:
+
+.. table:: Configuration Parameters Common for All Hash Table Types
+
+
+---+---------------------------+------------------------------------------------------------------------------+
+ | # | Parameter | Details
|
+ | | |
|
+
+===+===========================+==============================================================================+
+ | 1 | Key size | Measured as number of bytes. All keys
have the same size. |
+ | | |
|
+
+---+---------------------------+------------------------------------------------------------------------------+
+ | 2 | Key value (key data) size | Measured as number of bytes.
|
+ | | |
|
+
+---+---------------------------+------------------------------------------------------------------------------+
+ | 3 | Number of buckets | Needs to be a power of two.
|
+ | | |
|
+
+---+---------------------------+------------------------------------------------------------------------------+
+ | 4 | Maximum number of keys | Needs to be a power of two.
|
+ | | |
|
+
+---+---------------------------+------------------------------------------------------------------------------+
+ | 5 | Hash function | Examples: jhash, CRC hash, etc.
|
+ | | |
|
+
+---+---------------------------+------------------------------------------------------------------------------+
+ | 6 | Hash function seed | Parameter to be passed to the hash
function. |
+ | | |
|
+
+---+---------------------------+------------------------------------------------------------------------------+
+ | 7 | Key offset | Offset of the lookup key byte array
within the packet meta-data stored in |
+ | | | the packet buffer.
|
+ | | |
|
+
+---+---------------------------+------------------------------------------------------------------------------+
Bucket Full Problem
"""""""""""""""""""
@@ -452,17 +452,17 @@ The possible options are:
the search continues beyond the first group of 4 keys, potentially until
all keys in this bucket are examined.
The extendible bucket logic requires maintaining specific data structures
per table and per each bucket.
-.. _pg_table_23:
+.. _table_qos_23:
-**Table 23 Configuration Parameters Specific to Extendible Bucket Hash Table**
+.. table:: Configuration Parameters Specific to Extendible Bucket Hash Table
-+---+---------------------------+--------------------------------------------------+
-| # | Parameter | Details
|
-| | |
|
-+===+===========================+==================================================+
-| 1 | Number of additional keys | Needs to be a power of two, at least equal
to 4. |
-| | |
|
-+---+---------------------------+--------------------------------------------------+
+
+---+---------------------------+--------------------------------------------------+
+ | # | Parameter | Details
|
+ | | |
|
+
+===+===========================+==================================================+
+ | 1 | Number of additional keys | Needs to be a power of two, at least
equal to 4. |
+ | | |
|
+
+---+---------------------------+--------------------------------------------------+
Signature Computation
@@ -481,17 +481,17 @@ The possible options for key signature computation are:
The same CPU core reads the key from the packet meta-data, uses it to
compute the key signature
and also performs the bucket search step of the key lookup operation.
-.. _pg_table_24:
+.. _table_qos_24:
-**Table 24 Configuration Parameters Specific to Pre-computed Key Signature
Hash Table**
+.. table:: Configuration Parameters Specific to Pre-computed Key Signature
Hash Table
-+---+------------------+-----------------------------------------------------------------------+
-| # | Parameter | Details
|
-| | |
|
-+===+==================+=======================================================================+
-| 1 | Signature offset | Offset of the pre-computed key signature within the
packet meta-data. |
-| | |
|
-+---+------------------+-----------------------------------------------------------------------+
+
+---+------------------+-----------------------------------------------------------------------+
+ | # | Parameter | Details
|
+ | | |
|
+
+===+==================+=======================================================================+
+ | 1 | Signature offset | Offset of the pre-computed key signature within
the packet meta-data. |
+ | | |
|
+
+---+------------------+-----------------------------------------------------------------------+
Key Size Optimized Hash Tables
""""""""""""""""""""""""""""""
@@ -564,67 +564,67 @@ either with pre-computed signature or "do-sig").
Data Structures for Configurable Key Size Hash Tables
-.. _pg_table_25:
-
-**Table 25 Main Large Data Structures (Arrays) used for Configurable Key Size
Hash Tables**
-
-+---+-------------------------+------------------------------+---------------------------+-------------------------------+
-| # | Array name | Number of entries | Entry size
(bytes) | Description |
-| | | |
| |
-+===+=========================+==============================+===========================+===============================+
-| 1 | Bucket array | n_buckets (configurable) | 32
| Buckets of the hash table. |
-| | | |
| |
-+---+-------------------------+------------------------------+---------------------------+-------------------------------+
-| 2 | Bucket extensions array | n_buckets_ext (configurable) | 32
| This array is only created |
-| | | |
| for extendible bucket tables. |
-| | | |
| |
-+---+-------------------------+------------------------------+---------------------------+-------------------------------+
-| 3 | Key array | n_keys | key_size
(configurable) | Keys added to the hash table. |
-| | | |
| |
-+---+-------------------------+------------------------------+---------------------------+-------------------------------+
-| 4 | Data array | n_keys | entry_size
(configurable) | Key values (key data) |
-| | | |
| associated with the hash |
-| | | |
| table keys. |
-| | | |
| |
-+---+-------------------------+------------------------------+---------------------------+-------------------------------+
-
-.. _pg_table_26:
-
-**Table 26 Field Description for Bucket Array Entry (Configurable Key Size
Hash Tables)**
-
-+---+------------------+--------------------+------------------------------------------------------------------+
-| # | Field name | Field size (bytes) | Description
|
-| | | |
|
-+===+==================+====================+==================================================================+
-| 1 | Next Ptr/LRU | 8 | For LRU tables, this fields
represents the LRU list for the |
-| | | | current bucket stored as array
of 4 entries of 2 bytes each. |
-| | | | Entry 0 stores the index (0 ..
3) of the MRU key, while entry 3 |
-| | | | stores the index of the LRU key.
|
-| | | |
|
-| | | | For extendible bucket tables,
this field represents the next |
-| | | | pointer (i.e. the pointer to the
next group of 4 keys linked to |
-| | | | the current bucket). The next
pointer is not NULL if the bucket |
-| | | | is currently extended or NULL
otherwise. |
-| | | | To help the branchless
implementation, bit 0 (least significant |
-| | | | bit) of this field is set to 1
if the next pointer is not NULL |
-| | | | and to 0 otherwise.
|
-| | | |
|
-+---+------------------+--------------------+------------------------------------------------------------------+
-| 2 | Sig[0 .. 3] | 4 x 2 | If key X (X = 0 .. 3) is valid,
then sig X bits 15 .. 1 store |
-| | | | the most significant 15 bits of
key X signature and sig X bit 0 |
-| | | | is set to 1.
|
-| | | |
|
-| | | | If key X is not valid, then sig
X is set to zero. |
-| | | |
|
-+---+------------------+--------------------+------------------------------------------------------------------+
-| 3 | Key Pos [0 .. 3] | 4 x 4 | If key X is valid (X = 0 .. 3),
then Key Pos X represents the |
-| | | | index into the key array where
key X is stored, as well as the |
-| | | | index into the data array where
the value associated with key X |
-| | | | is stored.
|
-| | | |
|
-| | | | If key X is not valid, then the
value of Key Pos X is undefined. |
-| | | |
|
-+---+------------------+--------------------+------------------------------------------------------------------+
+.. _table_qos_25:
+
+.. table:: Main Large Data Structures (Arrays) used for Configurable Key Size
Hash Tables
+
+
+---+-------------------------+------------------------------+---------------------------+-------------------------------+
+ | # | Array name | Number of entries | Entry size
(bytes) | Description |
+ | | | |
| |
+
+===+=========================+==============================+===========================+===============================+
+ | 1 | Bucket array | n_buckets (configurable) | 32
| Buckets of the hash table. |
+ | | | |
| |
+
+---+-------------------------+------------------------------+---------------------------+-------------------------------+
+ | 2 | Bucket extensions array | n_buckets_ext (configurable) | 32
| This array is only created |
+ | | | |
| for extendible bucket tables. |
+ | | | |
| |
+
+---+-------------------------+------------------------------+---------------------------+-------------------------------+
+ | 3 | Key array | n_keys | key_size
(configurable) | Keys added to the hash table. |
+ | | | |
| |
+
+---+-------------------------+------------------------------+---------------------------+-------------------------------+
+ | 4 | Data array | n_keys | entry_size
(configurable) | Key values (key data) |
+ | | | |
| associated with the hash |
+ | | | |
| table keys. |
+ | | | |
| |
+
+---+-------------------------+------------------------------+---------------------------+-------------------------------+
+
+.. _table_qos_26:
+
+.. table:: Field Description for Bucket Array Entry (Configurable Key Size
Hash Tables)
+
+
+---+------------------+--------------------+------------------------------------------------------------------+
+ | # | Field name | Field size (bytes) | Description
|
+ | | | |
|
+
+===+==================+====================+==================================================================+
+ | 1 | Next Ptr/LRU | 8 | For LRU tables, this fields
represents the LRU list for the |
+ | | | | current bucket stored as
array of 4 entries of 2 bytes each. |
+ | | | | Entry 0 stores the index (0
.. 3) of the MRU key, while entry 3 |
+ | | | | stores the index of the LRU
key. |
+ | | | |
|
+ | | | | For extendible bucket tables,
this field represents the next |
+ | | | | pointer (i.e. the pointer to
the next group of 4 keys linked to |
+ | | | | the current bucket). The next
pointer is not NULL if the bucket |
+ | | | | is currently extended or NULL
otherwise. |
+ | | | | To help the branchless
implementation, bit 0 (least significant |
+ | | | | bit) of this field is set to
1 if the next pointer is not NULL |
+ | | | | and to 0 otherwise.
|
+ | | | |
|
+
+---+------------------+--------------------+------------------------------------------------------------------+
+ | 2 | Sig[0 .. 3] | 4 x 2 | If key X (X = 0 .. 3) is
valid, then sig X bits 15 .. 1 store |
+ | | | | the most significant 15 bits
of key X signature and sig X bit 0 |
+ | | | | is set to 1.
|
+ | | | |
|
+ | | | | If key X is not valid, then
sig X is set to zero. |
+ | | | |
|
+
+---+------------------+--------------------+------------------------------------------------------------------+
+ | 3 | Key Pos [0 .. 3] | 4 x 4 | If key X is valid (X = 0 ..
3), then Key Pos X represents the |
+ | | | | index into the key array
where key X is stored, as well as the |
+ | | | | index into the data array
where the value associated with key X |
+ | | | | is stored.
|
+ | | | |
|
+ | | | | If key X is not valid, then
the value of Key Pos X is undefined. |
+ | | | |
|
+
+---+------------------+--------------------+------------------------------------------------------------------+
:numref:`figure_figure35` and Table 27 detail the bucket search pipeline
stages (either LRU or extendable bucket,
@@ -639,80 +639,80 @@ For each pipeline stage, the described operations are
applied to each of the two
Tables)
-.. _pg_table_27:
-
-**Table 27 Description of the Bucket Search Pipeline Stages (Configurable Key
Size Hash Tables)**
-
-+---+---------------------------+------------------------------------------------------------------------------+
-| # | Stage name | Description
|
-| | |
|
-+===+===========================+==============================================================================+
-| 0 | Prefetch packet meta-data | Select next two packets from the burst of
input packets. |
-| | |
|
-| | | Prefetch packet meta-data containing the key
and key signature. |
-| | |
|
-+---+---------------------------+------------------------------------------------------------------------------+
-| 1 | Prefetch table bucket | Read the key signature from the packet
meta-data (for extendable bucket hash |
-| | | tables) or read the key from the packet
meta-data and compute key signature |
-| | | (for LRU tables).
|
-| | |
|
-| | | Identify the bucket ID using the key
signature. |
-| | |
|
-| | | Set bit 0 of the signature to 1 (to match
only signatures of valid keys from |
-| | | the table).
|
-| | |
|
-| | | Prefetch the bucket.
|
-| | |
|
-+---+---------------------------+------------------------------------------------------------------------------+
-| 2 | Prefetch table key | Read the key signatures from the bucket.
|
-| | |
|
-| | | Compare the signature of the input key
against the 4 key signatures from the |
-| | | packet. As result, the following is
obtained: |
-| | |
|
-| | | *match*
|
-| | | = equal to TRUE if there was at least one
signature match and to FALSE in |
-| | | the case of no signature match;
|
-| | |
|
-| | | *match_many*
|
-| | | = equal to TRUE is there were more than one
signature matches (can be up to |
-| | | 4 signature matches in the worst case
scenario) and to FALSE otherwise; |
-| | |
|
-| | | *match_pos*
|
-| | | = the index of the first key that produced
signature match (only valid if |
-| | | match is true).
|
-| | |
|
-| | | For extendable bucket hash tables only, set
|
-| | | *match_many*
|
-| | | to TRUE if next pointer is valid.
|
-| | |
|
-| | | Prefetch the bucket key indicated by
|
-| | | *match_pos*
|
-| | | (even if
|
-| | | *match_pos*
|
-| | | does not point to valid key valid).
|
-| | |
|
-+---+---------------------------+------------------------------------------------------------------------------+
-| 3 | Prefetch table data | Read the bucket key indicated by
|
-| | | *match_pos*.
|
-| | |
|
-| | | Compare the bucket key against the input
key. As result, the following is |
-| | | obtained:
|
-| | | *match_key*
|
-| | | = equal to TRUE if the two keys match and to
FALSE otherwise. |
-| | |
|
-| | | Report input key as lookup hit only when
both |
-| | | *match*
|
-| | | and
|
-| | | *match_key*
|
-| | | are equal to TRUE and as lookup miss
otherwise. |
-| | |
|
-| | | For LRU tables only, use branchless logic to
update the bucket LRU list |
-| | | (the current key becomes the new MRU) only
on lookup hit. |
-| | |
|
-| | | Prefetch the key value (key data) associated
with the current key (to avoid |
-| | | branches, this is done on both lookup hit
and miss). |
-| | |
|
-+---+---------------------------+------------------------------------------------------------------------------+
+.. _table_qos_27:
+
+.. table:: Description of the Bucket Search Pipeline Stages (Configurable Key
Size Hash Tables)
+
+
+---+---------------------------+------------------------------------------------------------------------------+
+ | # | Stage name | Description
|
+ | | |
|
+
+===+===========================+==============================================================================+
+ | 0 | Prefetch packet meta-data | Select next two packets from the burst of
input packets. |
+ | | |
|
+ | | | Prefetch packet meta-data containing the
key and key signature. |
+ | | |
|
+
+---+---------------------------+------------------------------------------------------------------------------+
+ | 1 | Prefetch table bucket | Read the key signature from the packet
meta-data (for extendable bucket hash |
+ | | | tables) or read the key from the packet
meta-data and compute key signature |
+ | | | (for LRU tables).
|
+ | | |
|
+ | | | Identify the bucket ID using the key
signature. |
+ | | |
|
+ | | | Set bit 0 of the signature to 1 (to match
only signatures of valid keys from |
+ | | | the table).
|
+ | | |
|
+ | | | Prefetch the bucket.
|
+ | | |
|
+
+---+---------------------------+------------------------------------------------------------------------------+
+ | 2 | Prefetch table key | Read the key signatures from the bucket.
|
+ | | |
|
+ | | | Compare the signature of the input key
against the 4 key signatures from the |
+ | | | packet. As result, the following is
obtained: |
+ | | |
|
+ | | | *match*
|
+ | | | = equal to TRUE if there was at least one
signature match and to FALSE in |
+ | | | the case of no signature match;
|
+ | | |
|
+ | | | *match_many*
|
+ | | | = equal to TRUE is there were more than
one signature matches (can be up to |
+ | | | 4 signature matches in the worst case
scenario) and to FALSE otherwise; |
+ | | |
|
+ | | | *match_pos*
|
+ | | | = the index of the first key that
produced signature match (only valid if |
+ | | | match is true).
|
+ | | |
|
+ | | | For extendable bucket hash tables only,
set |
+ | | | *match_many*
|
+ | | | to TRUE if next pointer is valid.
|
+ | | |
|
+ | | | Prefetch the bucket key indicated by
|
+ | | | *match_pos*
|
+ | | | (even if
|
+ | | | *match_pos*
|
+ | | | does not point to valid key valid).
|
+ | | |
|
+
+---+---------------------------+------------------------------------------------------------------------------+
+ | 3 | Prefetch table data | Read the bucket key indicated by
|
+ | | | *match_pos*.
|
+ | | |
|
+ | | | Compare the bucket key against the input
key. As result, the following is |
+ | | | obtained:
|
+ | | | *match_key*
|
+ | | | = equal to TRUE if the two keys match and
to FALSE otherwise. |
+ | | |
|
+ | | | Report input key as lookup hit only when
both |
+ | | | *match*
|
+ | | | and
|
+ | | | *match_key*
|
+ | | | are equal to TRUE and as lookup miss
otherwise. |
+ | | |
|
+ | | | For LRU tables only, use branchless logic
to update the bucket LRU list |
+ | | | (the current key becomes the new MRU)
only on lookup hit. |
+ | | |
|
+ | | | Prefetch the key value (key data)
associated with the current key (to avoid |
+ | | | branches, this is done on both lookup hit
and miss). |
+ | | |
|
+
+---+---------------------------+------------------------------------------------------------------------------+
Additional notes:
@@ -733,62 +733,62 @@ Additional notes:
The key signature comparison logic is described in Table 28.
-.. _pg_table_28:
-
-**Table 28 Lookup Tables for Match, Match_Many and Match_Pos**
-
-+----+------+---------------+--------------------+--------------------+
-| # | mask | match (1 bit) | match_many (1 bit) | match_pos (2 bits) |
-| | | | | |
-+----+------+---------------+--------------------+--------------------+
-| 0 | 0000 | 0 | 0 | 00 |
-| | | | | |
-+----+------+---------------+--------------------+--------------------+
-| 1 | 0001 | 1 | 0 | 00 |
-| | | | | |
-+----+------+---------------+--------------------+--------------------+
-| 2 | 0010 | 1 | 0 | 01 |
-| | | | | |
-+----+------+---------------+--------------------+--------------------+
-| 3 | 0011 | 1 | 1 | 00 |
-| | | | | |
-+----+------+---------------+--------------------+--------------------+
-| 4 | 0100 | 1 | 0 | 10 |
-| | | | | |
-+----+------+---------------+--------------------+--------------------+
-| 5 | 0101 | 1 | 1 | 00 |
-| | | | | |
-+----+------+---------------+--------------------+--------------------+
-| 6 | 0110 | 1 | 1 | 01 |
-| | | | | |
-+----+------+---------------+--------------------+--------------------+
-| 7 | 0111 | 1 | 1 | 00 |
-| | | | | |
-+----+------+---------------+--------------------+--------------------+
-| 8 | 1000 | 1 | 0 | 11 |
-| | | | | |
-+----+------+---------------+--------------------+--------------------+
-| 9 | 1001 | 1 | 1 | 00 |
-| | | | | |
-+----+------+---------------+--------------------+--------------------+
-| 10 | 1010 | 1 | 1 | 01 |
-| | | | | |
-+----+------+---------------+--------------------+--------------------+
-| 11 | 1011 | 1 | 1 | 00 |
-| | | | | |
-+----+------+---------------+--------------------+--------------------+
-| 12 | 1100 | 1 | 1 | 10 |
-| | | | | |
-+----+------+---------------+--------------------+--------------------+
-| 13 | 1101 | 1 | 1 | 00 |
-| | | | | |
-+----+------+---------------+--------------------+--------------------+
-| 14 | 1110 | 1 | 1 | 01 |
-| | | | | |
-+----+------+---------------+--------------------+--------------------+
-| 15 | 1111 | 1 | 1 | 00 |
-| | | | | |
-+----+------+---------------+--------------------+--------------------+
+.. _table_qos_28:
+
+.. table:: Lookup Tables for Match, Match_Many and Match_Pos
+
+ +----+------+---------------+--------------------+--------------------+
+ | # | mask | match (1 bit) | match_many (1 bit) | match_pos (2 bits) |
+ | | | | | |
+ +----+------+---------------+--------------------+--------------------+
+ | 0 | 0000 | 0 | 0 | 00 |
+ | | | | | |
+ +----+------+---------------+--------------------+--------------------+
+ | 1 | 0001 | 1 | 0 | 00 |
+ | | | | | |
+ +----+------+---------------+--------------------+--------------------+
+ | 2 | 0010 | 1 | 0 | 01 |
+ | | | | | |
+ +----+------+---------------+--------------------+--------------------+
+ | 3 | 0011 | 1 | 1 | 00 |
+ | | | | | |
+ +----+------+---------------+--------------------+--------------------+
+ | 4 | 0100 | 1 | 0 | 10 |
+ | | | | | |
+ +----+------+---------------+--------------------+--------------------+
+ | 5 | 0101 | 1 | 1 | 00 |
+ | | | | | |
+ +----+------+---------------+--------------------+--------------------+
+ | 6 | 0110 | 1 | 1 | 01 |
+ | | | | | |
+ +----+------+---------------+--------------------+--------------------+
+ | 7 | 0111 | 1 | 1 | 00 |
+ | | | | | |
+ +----+------+---------------+--------------------+--------------------+
+ | 8 | 1000 | 1 | 0 | 11 |
+ | | | | | |
+ +----+------+---------------+--------------------+--------------------+
+ | 9 | 1001 | 1 | 1 | 00 |
+ | | | | | |
+ +----+------+---------------+--------------------+--------------------+
+ | 10 | 1010 | 1 | 1 | 01 |
+ | | | | | |
+ +----+------+---------------+--------------------+--------------------+
+ | 11 | 1011 | 1 | 1 | 00 |
+ | | | | | |
+ +----+------+---------------+--------------------+--------------------+
+ | 12 | 1100 | 1 | 1 | 10 |
+ | | | | | |
+ +----+------+---------------+--------------------+--------------------+
+ | 13 | 1101 | 1 | 1 | 00 |
+ | | | | | |
+ +----+------+---------------+--------------------+--------------------+
+ | 14 | 1110 | 1 | 1 | 01 |
+ | | | | | |
+ +----+------+---------------+--------------------+--------------------+
+ | 15 | 1111 | 1 | 1 | 00 |
+ | | | | | |
+ +----+------+---------------+--------------------+--------------------+
The input *mask* hash bit X (X = 0 .. 3) set to 1 if input signature is equal
to bucket signature X and set to 0 otherwise.
The outputs *match*, *match_many* and *match_pos* are 1 bit, 1 bit and 2 bits
in size respectively and their meaning has been explained above.
@@ -798,23 +798,23 @@ As displayed in Table 29, the lookup tables for *match*
and *match_many* can be
Given the input *mask*, the values for *match*, *match_many* and *match_pos*
can be obtained by indexing their respective bit array to extract 1 bit,
1 bit and 2 bits respectively with branchless logic.
-.. _pg_table_29:
+.. _table_qos_29:
-**Table 29 Collapsed Lookup Tables for Match, Match_Many and Match_Pos**
+.. table:: Collapsed Lookup Tables for Match, Match_Many and Match_Pos
-+------------+------------------------------------------+-------------------+
-| | Bit array | Hexadecimal value |
-| | | |
-+------------+------------------------------------------+-------------------+
-| match | 1111_1111_1111_1110 | 0xFFFELLU |
-| | | |
-+------------+------------------------------------------+-------------------+
-| match_many | 1111_1110_1110_1000 | 0xFEE8LLU |
-| | | |
-+------------+------------------------------------------+-------------------+
-| match_pos | 0001_0010_0001_0011__0001_0010_0001_0000 | 0x12131210LLU |
-| | | |
-+------------+------------------------------------------+-------------------+
+
+------------+------------------------------------------+-------------------+
+ | | Bit array | Hexadecimal value
|
+ | | |
|
+
+------------+------------------------------------------+-------------------+
+ | match | 1111_1111_1111_1110 | 0xFFFELLU
|
+ | | |
|
+
+------------+------------------------------------------+-------------------+
+ | match_many | 1111_1110_1110_1000 | 0xFEE8LLU
|
+ | | |
|
+
+------------+------------------------------------------+-------------------+
+ | match_pos | 0001_0010_0001_0011__0001_0010_0001_0000 | 0x12131210LLU
|
+ | | |
|
+
+------------+------------------------------------------+-------------------+
The pseudo-code for match, match_many and match_pos is::
@@ -845,67 +845,67 @@ Single Key Size Hash Tables
Data Structures for 16-byte Key Hash Tables
-.. _pg_table_30:
-
-**Table 30 Main Large Data Structures (Arrays) used for 8-byte and 16-byte Key
Size Hash Tables**
-
-+---+-------------------------+------------------------------+----------------------+------------------------------------+
-| # | Array name | Number of entries | Entry size
(bytes) | Description |
-| | | |
| |
-+===+=========================+==============================+======================+====================================+
-| 1 | Bucket array | n_buckets (configurable) | *8-byte key
size:* | Buckets of the hash table. |
-| | | |
| |
-| | | | 64 + 4 x
entry_size | |
-| | | |
| |
-| | | |
| |
-| | | | *16-byte key
size:* | |
-| | | |
| |
-| | | | 128 + 4 x
entry_size | |
-| | | |
| |
-+---+-------------------------+------------------------------+----------------------+------------------------------------+
-| 2 | Bucket extensions array | n_buckets_ext (configurable) | *8-byte key
size:* | This array is only created for |
-| | | |
| extendible bucket tables. |
-| | | |
| |
-| | | | 64 + 4 x
entry_size | |
-| | | |
| |
-| | | |
| |
-| | | | *16-byte key
size:* | |
-| | | |
| |
-| | | | 128 + 4 x
entry_size | |
-| | | |
| |
-+---+-------------------------+------------------------------+----------------------+------------------------------------+
-
-.. _pg_table_31:
-
-**Table 31 Field Description for Bucket Array Entry (8-byte and 16-byte Key
Hash Tables)**
-
-+---+---------------+--------------------+-------------------------------------------------------------------------------+
-| # | Field name | Field size (bytes) | Description
|
-| | | |
|
-+===+===============+====================+===============================================================================+
-| 1 | Valid | 8 | Bit X (X = 0 .. 3) is set to 1 if
key X is valid or to 0 otherwise. |
-| | | |
|
-| | | | Bit 4 is only used for extendible
bucket tables to help with the |
-| | | | implementation of the branchless
logic. In this case, bit 4 is set to 1 if |
-| | | | next pointer is valid (not NULL) or
to 0 otherwise. |
-| | | |
|
-+---+---------------+--------------------+-------------------------------------------------------------------------------+
-| 2 | Next Ptr/LRU | 8 | For LRU tables, this fields
represents the LRU list for the current bucket |
-| | | | stored as array of 4 entries of 2
bytes each. Entry 0 stores the index |
-| | | | (0 .. 3) of the MRU key, while
entry 3 stores the index of the LRU key. |
-| | | |
|
-| | | | For extendible bucket tables, this
field represents the next pointer (i.e. |
-| | | | the pointer to the next group of 4
keys linked to the current bucket). The |
-| | | | next pointer is not NULL if the
bucket is currently extended or NULL |
-| | | | otherwise.
|
-| | | |
|
-+---+---------------+--------------------+-------------------------------------------------------------------------------+
-| 3 | Key [0 .. 3] | 4 x key_size | Full keys.
|
-| | | |
|
-+---+---------------+--------------------+-------------------------------------------------------------------------------+
-| 4 | Data [0 .. 3] | 4 x entry_size | Full key values (key data)
associated with keys 0 .. 3. |
-| | | |
|
-+---+---------------+--------------------+-------------------------------------------------------------------------------+
+.. _table_qos_30:
+
+.. table:: Main Large Data Structures (Arrays) used for 8-byte and 16-byte Key
Size Hash Tables
+
+
+---+-------------------------+------------------------------+----------------------+------------------------------------+
+ | # | Array name | Number of entries | Entry size
(bytes) | Description |
+ | | | |
| |
+
+===+=========================+==============================+======================+====================================+
+ | 1 | Bucket array | n_buckets (configurable) | *8-byte key
size:* | Buckets of the hash table. |
+ | | | |
| |
+ | | | | 64 + 4 x
entry_size | |
+ | | | |
| |
+ | | | |
| |
+ | | | | *16-byte key
size:* | |
+ | | | |
| |
+ | | | | 128 + 4 x
entry_size | |
+ | | | |
| |
+
+---+-------------------------+------------------------------+----------------------+------------------------------------+
+ | 2 | Bucket extensions array | n_buckets_ext (configurable) | *8-byte key
size:* | This array is only created for |
+ | | | |
| extendible bucket tables. |
+ | | | |
| |
+ | | | | 64 + 4 x
entry_size | |
+ | | | |
| |
+ | | | |
| |
+ | | | | *16-byte key
size:* | |
+ | | | |
| |
+ | | | | 128 + 4 x
entry_size | |
+ | | | |
| |
+
+---+-------------------------+------------------------------+----------------------+------------------------------------+
+
+.. _table_qos_31:
+
+.. table:: Field Description for Bucket Array Entry (8-byte and 16-byte Key
Hash Tables)
+
+
+---+---------------+--------------------+-------------------------------------------------------------------------------+
+ | # | Field name | Field size (bytes) | Description
|
+ | | | |
|
+
+===+===============+====================+===============================================================================+
+ | 1 | Valid | 8 | Bit X (X = 0 .. 3) is set to 1
if key X is valid or to 0 otherwise. |
+ | | | |
|
+ | | | | Bit 4 is only used for
extendible bucket tables to help with the |
+ | | | | implementation of the branchless
logic. In this case, bit 4 is set to 1 if |
+ | | | | next pointer is valid (not NULL)
or to 0 otherwise. |
+ | | | |
|
+
+---+---------------+--------------------+-------------------------------------------------------------------------------+
+ | 2 | Next Ptr/LRU | 8 | For LRU tables, this fields
represents the LRU list for the current bucket |
+ | | | | stored as array of 4 entries of
2 bytes each. Entry 0 stores the index |
+ | | | | (0 .. 3) of the MRU key, while
entry 3 stores the index of the LRU key. |
+ | | | |
|
+ | | | | For extendible bucket tables,
this field represents the next pointer (i.e. |
+ | | | | the pointer to the next group of
4 keys linked to the current bucket). The |
+ | | | | next pointer is not NULL if the
bucket is currently extended or NULL |
+ | | | | otherwise.
|
+ | | | |
|
+
+---+---------------+--------------------+-------------------------------------------------------------------------------+
+ | 3 | Key [0 .. 3] | 4 x key_size | Full keys.
|
+ | | | |
|
+
+---+---------------+--------------------+-------------------------------------------------------------------------------+
+ | 4 | Data [0 .. 3] | 4 x entry_size | Full key values (key data)
associated with keys 0 .. 3. |
+ | | | |
|
+
+---+---------------+--------------------+-------------------------------------------------------------------------------+
and detail the bucket search pipeline used to implement 8-byte and 16-byte key
hash tables (either LRU or extendable bucket,
either with pre-computed signature or "do-sig").
@@ -919,42 +919,42 @@ For each pipeline stage, the described operations are
applied to each of the two
Tables)
-.. _pg_table_32:
-
-**Table 32 Description of the Bucket Search Pipeline Stages (8-byte and
16-byte Key Hash Tables)**
-
-+---+---------------------------+-----------------------------------------------------------------------------+
-| # | Stage name | Description
|
-| | |
|
-+===+===========================+=============================================================================+
-| 0 | Prefetch packet meta-data | #. Select next two packets from the burst
of input packets. |
-| | |
|
-| | | #. Prefetch packet meta-data containing the
key and key signature. |
-| | |
|
-+---+---------------------------+-----------------------------------------------------------------------------+
-| 1 | Prefetch table bucket | #. Read the key signature from the packet
meta-data (for extendable bucket |
-| | | hash tables) or read the key from the
packet meta-data and compute key |
-| | | signature (for LRU tables).
|
-| | |
|
-| | | #. Identify the bucket ID using the key
signature. |
-| | |
|
-| | | #. Prefetch the bucket.
|
-| | |
|
-+---+---------------------------+-----------------------------------------------------------------------------+
-| 2 | Prefetch table data | #. Read the bucket.
|
-| | |
|
-| | | #. Compare all 4 bucket keys against the
input key. |
-| | |
|
-| | | #. Report input key as lookup hit only when
a match is identified (more |
-| | | than one key match is not possible)
|
-| | |
|
-| | | #. For LRU tables only, use branchless
logic to update the bucket LRU list |
-| | | (the current key becomes the new MRU)
only on lookup hit. |
-| | |
|
-| | | #. Prefetch the key value (key data)
associated with the matched key (to |
-| | | avoid branches, this is done on both
lookup hit and miss). |
-| | |
|
-+---+---------------------------+-----------------------------------------------------------------------------+
+.. _table_qos_32:
+
+.. table:: Description of the Bucket Search Pipeline Stages (8-byte and
16-byte Key Hash Tables)
+
+
+---+---------------------------+-----------------------------------------------------------------------------+
+ | # | Stage name | Description
|
+ | | |
|
+
+===+===========================+=============================================================================+
+ | 0 | Prefetch packet meta-data | #. Select next two packets from the
burst of input packets. |
+ | | |
|
+ | | | #. Prefetch packet meta-data containing
the key and key signature. |
+ | | |
|
+
+---+---------------------------+-----------------------------------------------------------------------------+
+ | 1 | Prefetch table bucket | #. Read the key signature from the
packet meta-data (for extendable bucket |
+ | | | hash tables) or read the key from the
packet meta-data and compute key |
+ | | | signature (for LRU tables).
|
+ | | |
|
+ | | | #. Identify the bucket ID using the key
signature. |
+ | | |
|
+ | | | #. Prefetch the bucket.
|
+ | | |
|
+
+---+---------------------------+-----------------------------------------------------------------------------+
+ | 2 | Prefetch table data | #. Read the bucket.
|
+ | | |
|
+ | | | #. Compare all 4 bucket keys against the
input key. |
+ | | |
|
+ | | | #. Report input key as lookup hit only
when a match is identified (more |
+ | | | than one key match is not possible)
|
+ | | |
|
+ | | | #. For LRU tables only, use branchless
logic to update the bucket LRU list |
+ | | | (the current key becomes the new MRU)
only on lookup hit. |
+ | | |
|
+ | | | #. Prefetch the key value (key data)
associated with the matched key (to |
+ | | | avoid branches, this is done on both
lookup hit and miss). |
+ | | |
|
+
+---+---------------------------+-----------------------------------------------------------------------------+
Additional notes:
@@ -1043,25 +1043,25 @@ A special category of the reserved actions is
represented by the next hop action
tables and output ports through the pipeline.
Table 33 lists the next hop actions.
-.. _pg_table_33:
-
-**Table 33 Next Hop Actions (Reserved)**
-
-+---+---------------------+-----------------------------------------------------------------------------------+
-| # | Next hop action | Description
|
-| | |
|
-+===+=====================+===================================================================================+
-| 1 | Drop | Drop the current packet.
|
-| | |
|
-+---+---------------------+-----------------------------------------------------------------------------------+
-| 2 | Send to output port | Send the current packet to specified output port.
The output port ID is metadata |
-| | | stored in the same table entry.
|
-| | |
|
-+---+---------------------+-----------------------------------------------------------------------------------+
-| 3 | Send to table | Send the current packet to specified table. The
table ID is metadata stored in |
-| | | the same table entry.
|
-| | |
|
-+---+---------------------+-----------------------------------------------------------------------------------+
+.. _table_qos_33:
+
+.. table:: Next Hop Actions (Reserved)
+
+
+---+---------------------+-----------------------------------------------------------------------------------+
+ | # | Next hop action | Description
|
+ | | |
|
+
+===+=====================+===================================================================================+
+ | 1 | Drop | Drop the current packet.
|
+ | | |
|
+
+---+---------------------+-----------------------------------------------------------------------------------+
+ | 2 | Send to output port | Send the current packet to specified output
port. The output port ID is metadata |
+ | | | stored in the same table entry.
|
+ | | |
|
+
+---+---------------------+-----------------------------------------------------------------------------------+
+ | 3 | Send to table | Send the current packet to specified table. The
table ID is metadata stored in |
+ | | | the same table entry.
|
+ | | |
|
+
+---+---------------------+-----------------------------------------------------------------------------------+
User Actions
^^^^^^^^^^^^
@@ -1074,37 +1074,37 @@ for the user actions and their associated meta-data,
with each table entry having its own set of enabled user actions and its own
copy of the action meta-data.
Table 34 contains a non-exhaustive list of user action examples.
-.. _pg_table_34:
-
-**Table 34 User Action Examples**
-
-+---+-----------------------------------+---------------------------------------------------------------------+
-| # | User action | Description
|
-| | |
|
-+===+===================================+=====================================================================+
-| 1 | Metering | Per flow traffic metering using the
srTCM and trTCM algorithms. |
-| | |
|
-+---+-----------------------------------+---------------------------------------------------------------------+
-| 2 | Statistics | Update the statistics counters
maintained per flow. |
-| | |
|
-+---+-----------------------------------+---------------------------------------------------------------------+
-| 3 | App ID | Per flow state machine fed by
variable length sequence of packets |
-| | | at the flow initialization with the
purpose of identifying the |
-| | | traffic type and application.
|
-| | |
|
-+---+-----------------------------------+---------------------------------------------------------------------+
-| 4 | Push/pop labels | Push/pop VLAN/MPLS labels to/from
the current packet. |
-| | |
|
-+---+-----------------------------------+---------------------------------------------------------------------+
-| 5 | Network Address Translation (NAT) | Translate between the internal (LAN)
and external (WAN) IP |
-| | | destination/source address and/or L4
protocol destination/source |
-| | | port.
|
-| | |
|
-+---+-----------------------------------+---------------------------------------------------------------------+
-| 6 | TTL update | Decrement IP TTL and, in case of
IPv4 packets, update the IP |
-| | | checksum.
|
-| | |
|
-+---+-----------------------------------+---------------------------------------------------------------------+
+.. _table_qos_34:
+
+.. table:: User Action Examples
+
+
+---+-----------------------------------+---------------------------------------------------------------------+
+ | # | User action | Description
|
+ | | |
|
+
+===+===================================+=====================================================================+
+ | 1 | Metering | Per flow traffic metering using
the srTCM and trTCM algorithms. |
+ | | |
|
+
+---+-----------------------------------+---------------------------------------------------------------------+
+ | 2 | Statistics | Update the statistics counters
maintained per flow. |
+ | | |
|
+
+---+-----------------------------------+---------------------------------------------------------------------+
+ | 3 | App ID | Per flow state machine fed by
variable length sequence of packets |
+ | | | at the flow initialization with
the purpose of identifying the |
+ | | | traffic type and application.
|
+ | | |
|
+
+---+-----------------------------------+---------------------------------------------------------------------+
+ | 4 | Push/pop labels | Push/pop VLAN/MPLS labels to/from
the current packet. |
+ | | |
|
+
+---+-----------------------------------+---------------------------------------------------------------------+
+ | 5 | Network Address Translation (NAT) | Translate between the internal
(LAN) and external (WAN) IP |
+ | | | destination/source address and/or
L4 protocol destination/source |
+ | | | port.
|
+ | | |
|
+
+---+-----------------------------------+---------------------------------------------------------------------+
+ | 6 | TTL update | Decrement IP TTL and, in case of
IPv4 packets, update the IP |
+ | | | checksum.
|
+ | | |
|
+
+---+-----------------------------------+---------------------------------------------------------------------+
Multicore Scaling
-----------------
diff --git a/doc/guides/prog_guide/qos_framework.rst
b/doc/guides/prog_guide/qos_framework.rst
index 59f7fb3..14c4f36 100644
--- a/doc/guides/prog_guide/qos_framework.rst
+++ b/doc/guides/prog_guide/qos_framework.rst
@@ -49,73 +49,73 @@ This pipeline can be built using reusable DPDK software
libraries.
The main blocks implementing QoS in this pipeline are: the policer, the
dropper and the scheduler.
A functional description of each block is provided in the following table.
-.. _pg_table_1:
-
-**Table 1. Packet Processing Pipeline Implementing QoS**
-
-+---+------------------------+--------------------------------------------------------------------------------+
-| # | Block | Functional Description
|
-| | |
|
-+===+========================+================================================================================+
-| 1 | Packet I/O RX & TX | Packet reception/ transmission from/to multiple
NIC ports. Poll mode drivers |
-| | | (PMDs) for Intel 1 GbE/10 GbE NICs.
|
-| | |
|
-+---+------------------------+--------------------------------------------------------------------------------+
-| 2 | Packet parser | Identify the protocol stack of the input
packet. Check the integrity of the |
-| | | packet headers.
|
-| | |
|
-+---+------------------------+--------------------------------------------------------------------------------+
-| 3 | Flow classification | Map the input packet to one of the known
traffic flows. Exact match table |
-| | | lookup using configurable hash function (jhash,
CRC and so on) and bucket |
-| | | logic to handle collisions.
|
-| | |
|
-+---+------------------------+--------------------------------------------------------------------------------+
-| 4 | Policer | Packet metering using srTCM (RFC 2697) or trTCM
(RFC2698) algorithms. |
-| | |
|
-+---+------------------------+--------------------------------------------------------------------------------+
-| 5 | Load Balancer | Distribute the input packets to the application
workers. Provide uniform load |
-| | | to each worker. Preserve the affinity of
traffic flows to workers and the |
-| | | packet order within each flow.
|
-| | |
|
-+---+------------------------+--------------------------------------------------------------------------------+
-| 6 | Worker threads | Placeholders for the customer specific
application workload (for example, IP |
-| | | stack and so on).
|
-| | |
|
-+---+------------------------+--------------------------------------------------------------------------------+
-| 7 | Dropper | Congestion management using the Random Early
Detection (RED) algorithm |
-| | | (specified by the Sally Floyd - Van Jacobson
paper) or Weighted RED (WRED). |
-| | | Drop packets based on the current scheduler
queue load level and packet |
-| | | priority. When congestion is experienced, lower
priority packets are dropped |
-| | | first.
|
-| | |
|
-+---+------------------------+--------------------------------------------------------------------------------+
-| 8 | Hierarchical Scheduler | 5-level hierarchical scheduler (levels are:
output port, subport, pipe, |
-| | | traffic class and queue) with thousands
(typically 64K) leaf nodes (queues). |
-| | | Implements traffic shaping (for subport and
pipe levels), strict priority |
-| | | (for traffic class level) and Weighted Round
Robin (WRR) (for queues within |
-| | | each pipe traffic class).
|
-| | |
|
-+---+------------------------+--------------------------------------------------------------------------------+
+.. _table_qos_1:
+
+.. table:: Packet Processing Pipeline Implementing QoS
+
+
+---+------------------------+--------------------------------------------------------------------------------+
+ | # | Block | Functional Description
|
+ | | |
|
+
+===+========================+================================================================================+
+ | 1 | Packet I/O RX & TX | Packet reception/ transmission from/to
multiple NIC ports. Poll mode drivers |
+ | | | (PMDs) for Intel 1 GbE/10 GbE NICs.
|
+ | | |
|
+
+---+------------------------+--------------------------------------------------------------------------------+
+ | 2 | Packet parser | Identify the protocol stack of the input
packet. Check the integrity of the |
+ | | | packet headers.
|
+ | | |
|
+
+---+------------------------+--------------------------------------------------------------------------------+
+ | 3 | Flow classification | Map the input packet to one of the known
traffic flows. Exact match table |
+ | | | lookup using configurable hash function
(jhash, CRC and so on) and bucket |
+ | | | logic to handle collisions.
|
+ | | |
|
+
+---+------------------------+--------------------------------------------------------------------------------+
+ | 4 | Policer | Packet metering using srTCM (RFC 2697) or
trTCM (RFC2698) algorithms. |
+ | | |
|
+
+---+------------------------+--------------------------------------------------------------------------------+
+ | 5 | Load Balancer | Distribute the input packets to the
application workers. Provide uniform load |
+ | | | to each worker. Preserve the affinity of
traffic flows to workers and the |
+ | | | packet order within each flow.
|
+ | | |
|
+
+---+------------------------+--------------------------------------------------------------------------------+
+ | 6 | Worker threads | Placeholders for the customer specific
application workload (for example, IP |
+ | | | stack and so on).
|
+ | | |
|
+
+---+------------------------+--------------------------------------------------------------------------------+
+ | 7 | Dropper | Congestion management using the Random Early
Detection (RED) algorithm |
+ | | | (specified by the Sally Floyd - Van Jacobson
paper) or Weighted RED (WRED). |
+ | | | Drop packets based on the current scheduler
queue load level and packet |
+ | | | priority. When congestion is experienced,
lower priority packets are dropped |
+ | | | first.
|
+ | | |
|
+
+---+------------------------+--------------------------------------------------------------------------------+
+ | 8 | Hierarchical Scheduler | 5-level hierarchical scheduler (levels are:
output port, subport, pipe, |
+ | | | traffic class and queue) with thousands
(typically 64K) leaf nodes (queues). |
+ | | | Implements traffic shaping (for subport and
pipe levels), strict priority |
+ | | | (for traffic class level) and Weighted Round
Robin (WRR) (for queues within |
+ | | | each pipe traffic class).
|
+ | | |
|
+
+---+------------------------+--------------------------------------------------------------------------------+
The infrastructure blocks used throughout the packet processing pipeline are
listed in the following table.
-.. _pg_table_2:
+.. _table_qos_2:
-**Table 2. Infrastructure Blocks Used by the Packet Processing Pipeline**
+.. table:: Infrastructure Blocks Used by the Packet Processing Pipeline
-+---+-----------------------+-----------------------------------------------------------------------+
-| # | Block | Functional Description
|
-| | |
|
-+===+=======================+=======================================================================+
-| 1 | Buffer manager | Support for global buffer pools and private
per-thread buffer caches. |
-| | |
|
-+---+-----------------------+-----------------------------------------------------------------------+
-| 2 | Queue manager | Support for message passing between pipeline
blocks. |
-| | |
|
-+---+-----------------------+-----------------------------------------------------------------------+
-| 3 | Power saving | Support for power saving during low activity
periods. |
-| | |
|
-+---+-----------------------+-----------------------------------------------------------------------+
+
+---+-----------------------+-----------------------------------------------------------------------+
+ | # | Block | Functional Description
|
+ | | |
|
+
+===+=======================+=======================================================================+
+ | 1 | Buffer manager | Support for global buffer pools and private
per-thread buffer caches. |
+ | | |
|
+
+---+-----------------------+-----------------------------------------------------------------------+
+ | 2 | Queue manager | Support for message passing between pipeline
blocks. |
+ | | |
|
+
+---+-----------------------+-----------------------------------------------------------------------+
+ | 3 | Power saving | Support for power saving during low activity
periods. |
+ | | |
|
+
+---+-----------------------+-----------------------------------------------------------------------+
The mapping of pipeline blocks to CPU cores is configurable based on the
performance level required by each specific application
and the set of features enabled for each block.
@@ -170,50 +170,50 @@ Each queue hosts packets from one or multiple connections
of the same type belon
The functionality of each hierarchical level is detailed in the following
table.
-.. _pg_table_3:
-
-**Table 3. Port Scheduling Hierarchy**
-
-+---+--------------------+----------------------------+---------------------------------------------------------------+
-| # | Level | Siblings per Parent | Functional Description
|
-| | | |
|
-+===+====================+============================+===============================================================+
-| 1 | Port | - | #. Output Ethernet
port 1/10/40 GbE. |
-| | | |
|
-| | | | #. Multiple ports are
scheduled in round robin order with |
-| | | | all ports having
equal priority. |
-| | | |
|
-+---+--------------------+----------------------------+---------------------------------------------------------------+
-| 2 | Subport | Configurable (default: 8) | #. Traffic shaping
using token bucket algorithm (one token |
-| | | | bucket per
subport). |
-| | | |
|
-| | | | #. Upper limit
enforced per Traffic Class (TC) at the |
-| | | | subport level.
|
-| | | |
|
-| | | | #. Lower priority TCs
able to reuse subport bandwidth |
-| | | | currently unused
by higher priority TCs. |
-| | | |
|
-+---+--------------------+----------------------------+---------------------------------------------------------------+
-| 3 | Pipe | Configurable (default: 4K) | #. Traffic shaping
using the token bucket algorithm (one |
-| | | | token bucket per
pipe. |
-| | | |
|
-+---+--------------------+----------------------------+---------------------------------------------------------------+
-| 4 | Traffic Class (TC) | 4 | #. TCs of the same
pipe handled in strict priority order. |
-| | | |
|
-| | | | #. Upper limit
enforced per TC at the pipe level. |
-| | | |
|
-| | | | #. Lower priority TCs
able to reuse pipe bandwidth currently |
-| | | | unused by higher
priority TCs. |
-| | | |
|
-| | | | #. When subport TC is
oversubscribed (configuration time |
-| | | | event), pipe TC
upper limit is capped to a dynamically |
-| | | | adjusted value
that is shared by all the subport pipes. |
-| | | |
|
-+---+--------------------+----------------------------+---------------------------------------------------------------+
-| 5 | Queue | 4 | #. Queues of the same
TC are serviced using Weighted Round |
-| | | | Robin (WRR)
according to predefined weights. |
-| | | |
|
-+---+--------------------+----------------------------+---------------------------------------------------------------+
+.. _table_qos_3:
+
+.. table:: Port Scheduling Hierarchy
+
+
+---+--------------------+----------------------------+---------------------------------------------------------------+
+ | # | Level | Siblings per Parent | Functional
Description |
+ | | | |
|
+
+===+====================+============================+===============================================================+
+ | 1 | Port | - | #. Output Ethernet
port 1/10/40 GbE. |
+ | | | |
|
+ | | | | #. Multiple ports
are scheduled in round robin order with |
+ | | | | all ports
having equal priority. |
+ | | | |
|
+
+---+--------------------+----------------------------+---------------------------------------------------------------+
+ | 2 | Subport | Configurable (default: 8) | #. Traffic shaping
using token bucket algorithm (one token |
+ | | | | bucket per
subport). |
+ | | | |
|
+ | | | | #. Upper limit
enforced per Traffic Class (TC) at the |
+ | | | | subport level.
|
+ | | | |
|
+ | | | | #. Lower priority
TCs able to reuse subport bandwidth |
+ | | | | currently
unused by higher priority TCs. |
+ | | | |
|
+
+---+--------------------+----------------------------+---------------------------------------------------------------+
+ | 3 | Pipe | Configurable (default: 4K) | #. Traffic shaping
using the token bucket algorithm (one |
+ | | | | token bucket
per pipe. |
+ | | | |
|
+
+---+--------------------+----------------------------+---------------------------------------------------------------+
+ | 4 | Traffic Class (TC) | 4 | #. TCs of the same
pipe handled in strict priority order. |
+ | | | |
|
+ | | | | #. Upper limit
enforced per TC at the pipe level. |
+ | | | |
|
+ | | | | #. Lower priority
TCs able to reuse pipe bandwidth currently |
+ | | | | unused by
higher priority TCs. |
+ | | | |
|
+ | | | | #. When subport TC
is oversubscribed (configuration time |
+ | | | | event), pipe TC
upper limit is capped to a dynamically |
+ | | | | adjusted value
that is shared by all the subport pipes. |
+ | | | |
|
+
+---+--------------------+----------------------------+---------------------------------------------------------------+
+ | 5 | Queue | 4 | #. Queues of the
same TC are serviced using Weighted Round |
+ | | | | Robin (WRR)
according to predefined weights. |
+ | | | |
|
+
+---+--------------------+----------------------------+---------------------------------------------------------------+
Application Programming Interface (API)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -297,65 +297,65 @@ A schematic of the internal data structures in shown in
with details in.
Internal Data Structures per Port
-.. _pg_table_4:
-
-**Table 4. Scheduler Internal Data Structures per Port**
-
-+---+----------------------+-------------------------+---------------------+------------------------------+---------------------------------------------------+
-| # | Data structure | Size (bytes) | # per port |
Access type | Description
|
-| | | | |
| |
-| | | |
+-------------+----------------+---------------------------------------------------+
-| | | | |
Enq | Deq |
|
-| | | | |
| | |
-+===+======================+=========================+=====================+=============+================+===================================================+
-| 1 | Subport table entry | 64 | # subports per port | -
| Rd, Wr | Persistent subport data (credits, etc). |
-| | | | |
| | |
-+---+----------------------+-------------------------+---------------------+-------------+----------------+---------------------------------------------------+
-| 2 | Pipe table entry | 64 | # pipes per port | -
| Rd, Wr | Persistent data for pipe, its TCs and its queues |
-| | | | |
| | (credits, etc) that is updated during run-time. |
-| | | | |
| | |
-| | | | |
| | The pipe configuration parameters do not change |
-| | | | |
| | during run-time. The same pipe configuration |
-| | | | |
| | parameters are shared by multiple pipes, |
-| | | | |
| | therefore they are not part of pipe table entry. |
-| | | | |
| | |
-+---+----------------------+-------------------------+---------------------+-------------+----------------+---------------------------------------------------+
-| 3 | Queue table entry | 4 | #queues per port |
Rd, Wr | Rd, Wr | Persistent queue data (read and write pointers).
|
-| | | | |
| | The queue size is the same per TC for all queues, |
-| | | | |
| | allowing the queue base address to be computed |
-| | | | |
| | using a fast formula, so these two parameters are |
-| | | | |
| | not part of queue table entry. |
-| | | | |
| | |
-| | | | |
| | The queue table entries for any given pipe are |
-| | | | |
| | stored in the same cache line. |
-| | | | |
| | |
-+---+----------------------+-------------------------+---------------------+-------------+----------------+---------------------------------------------------+
-| 4 | Queue storage area | Config (default: 64 x8) | # queues per port |
Wr | Rd | Array of elements per queue; each element is 8
|
-| | | | |
| | byte in size (mbuf pointer). |
-| | | | |
| | |
-+---+----------------------+-------------------------+---------------------+-------------+----------------+---------------------------------------------------+
-| 5 | Active queues bitmap | 1 bit per queue | 1 |
Wr (Set) | Rd, Wr (Clear) | The bitmap maintains one status bit per queue:
|
-| | | | |
| | queue not active (queue is empty) or queue active |
-| | | | |
| | (queue is not empty). |
-| | | | |
| | |
-| | | | |
| | Queue bit is set by the scheduler enqueue and |
-| | | | |
| | cleared by the scheduler dequeue when queue |
-| | | | |
| | becomes empty. |
-| | | | |
| | |
-| | | | |
| | Bitmap scan operation returns the next non-empty |
-| | | | |
| | pipe and its status (16-bit mask of active queue |
-| | | | |
| | in the pipe). |
-| | | | |
| | |
-+---+----------------------+-------------------------+---------------------+-------------+----------------+---------------------------------------------------+
-| 6 | Grinder | ~128 | Config (default: 8) | -
| Rd, Wr | Short list of active pipes currently under |
-| | | | |
| | processing. The grinder contains temporary data |
-| | | | |
| | during pipe processing. |
-| | | | |
| | |
-| | | | |
| | Once the current pipe exhausts packets or |
-| | | | |
| | credits, it is replaced with another active pipe |
-| | | | |
| | from the bitmap. |
-| | | | |
| | |
-+---+----------------------+-------------------------+---------------------+-------------+----------------+---------------------------------------------------+
+.. _table_qos_4:
+
+.. table:: Scheduler Internal Data Structures per Port
+
+
+---+----------------------+-------------------------+---------------------+------------------------------+---------------------------------------------------+
+ | # | Data structure | Size (bytes) | # per port
| Access type | Description
|
+ | | | |
| |
|
+ | | | |
+-------------+----------------+---------------------------------------------------+
+ | | | |
| Enq | Deq |
|
+ | | | |
| | |
|
+
+===+======================+=========================+=====================+=============+================+===================================================+
+ | 1 | Subport table entry | 64 | # subports per port
| - | Rd, Wr | Persistent subport data (credits, etc).
|
+ | | | |
| | |
|
+
+---+----------------------+-------------------------+---------------------+-------------+----------------+---------------------------------------------------+
+ | 2 | Pipe table entry | 64 | # pipes per port
| - | Rd, Wr | Persistent data for pipe, its TCs and its
queues |
+ | | | |
| | | (credits, etc) that is updated during
run-time. |
+ | | | |
| | |
|
+ | | | |
| | | The pipe configuration parameters do not
change |
+ | | | |
| | | during run-time. The same pipe configuration
|
+ | | | |
| | | parameters are shared by multiple pipes,
|
+ | | | |
| | | therefore they are not part of pipe table
entry. |
+ | | | |
| | |
|
+
+---+----------------------+-------------------------+---------------------+-------------+----------------+---------------------------------------------------+
+ | 3 | Queue table entry | 4 | #queues per port
| Rd, Wr | Rd, Wr | Persistent queue data (read and write
pointers). |
+ | | | |
| | | The queue size is the same per TC for all
queues, |
+ | | | |
| | | allowing the queue base address to be computed
|
+ | | | |
| | | using a fast formula, so these two parameters
are |
+ | | | |
| | | not part of queue table entry.
|
+ | | | |
| | |
|
+ | | | |
| | | The queue table entries for any given pipe are
|
+ | | | |
| | | stored in the same cache line.
|
+ | | | |
| | |
|
+
+---+----------------------+-------------------------+---------------------+-------------+----------------+---------------------------------------------------+
+ | 4 | Queue storage area | Config (default: 64 x8) | # queues per port
| Wr | Rd | Array of elements per queue; each element is 8
|
+ | | | |
| | | byte in size (mbuf pointer).
|
+ | | | |
| | |
|
+
+---+----------------------+-------------------------+---------------------+-------------+----------------+---------------------------------------------------+
+ | 5 | Active queues bitmap | 1 bit per queue | 1
| Wr (Set) | Rd, Wr (Clear) | The bitmap maintains one status bit per queue:
|
+ | | | |
| | | queue not active (queue is empty) or queue
active |
+ | | | |
| | | (queue is not empty).
|
+ | | | |
| | |
|
+ | | | |
| | | Queue bit is set by the scheduler enqueue and
|
+ | | | |
| | | cleared by the scheduler dequeue when queue
|
+ | | | |
| | | becomes empty.
|
+ | | | |
| | |
|
+ | | | |
| | | Bitmap scan operation returns the next
non-empty |
+ | | | |
| | | pipe and its status (16-bit mask of active
queue |
+ | | | |
| | | in the pipe).
|
+ | | | |
| | |
|
+
+---+----------------------+-------------------------+---------------------+-------------+----------------+---------------------------------------------------+
+ | 6 | Grinder | ~128 | Config (default: 8)
| - | Rd, Wr | Short list of active pipes currently under
|
+ | | | |
| | | processing. The grinder contains temporary
data |
+ | | | |
| | | during pipe processing.
|
+ | | | |
| | |
|
+ | | | |
| | | Once the current pipe exhausts packets or
|
+ | | | |
| | | credits, it is replaced with another active
pipe |
+ | | | |
| | | from the bitmap.
|
+ | | | |
| | |
|
+
+---+----------------------+-------------------------+---------------------+-------------+----------------+---------------------------------------------------+
Multicore Scaling Strategy
^^^^^^^^^^^^^^^^^^^^^^^^^^
@@ -578,29 +578,29 @@ As the greatest common divisor for all packet lengths is
one byte, the unit of c
The number of credits required for the transmission of a packet of n bytes is
equal to (n+h),
where h is equal to the number of framing overhead bytes per packet.
-.. _pg_table_5:
-
-**Table 5. Ethernet Frame Overhead Fields**
-
-+---+--------------------------------+----------------+---------------------------------------------------------------------------+
-| # | Packet field | Length (bytes) | Comments
|
-| | | |
|
-+===+================================+================+===========================================================================+
-| 1 | Preamble | 7 |
|
-| | | |
|
-+---+--------------------------------+----------------+---------------------------------------------------------------------------+
-| 2 | Start of Frame Delimiter (SFD) | 1 |
|
-| | | |
|
-+---+--------------------------------+----------------+---------------------------------------------------------------------------+
-| 3 | Frame Check Sequence (FCS) | 4 | Considered overhead
only if not included in the mbuf packet length field. |
-| | | |
|
-+---+--------------------------------+----------------+---------------------------------------------------------------------------+
-| 4 | Inter Frame Gap (IFG) | 12 |
|
-| | | |
|
-+---+--------------------------------+----------------+---------------------------------------------------------------------------+
-| 5 | Total | 24 |
|
-| | | |
|
-+---+--------------------------------+----------------+---------------------------------------------------------------------------+
+.. _table_qos_5:
+
+.. table:: Ethernet Frame Overhead Fields
+
+
+---+--------------------------------+----------------+---------------------------------------------------------------------------+
+ | # | Packet field | Length (bytes) | Comments
|
+ | | | |
|
+
+===+================================+================+===========================================================================+
+ | 1 | Preamble | 7 |
|
+ | | | |
|
+
+---+--------------------------------+----------------+---------------------------------------------------------------------------+
+ | 2 | Start of Frame Delimiter (SFD) | 1 |
|
+ | | | |
|
+
+---+--------------------------------+----------------+---------------------------------------------------------------------------+
+ | 3 | Frame Check Sequence (FCS) | 4 | Considered overhead
only if not included in the mbuf packet length field. |
+ | | | |
|
+
+---+--------------------------------+----------------+---------------------------------------------------------------------------+
+ | 4 | Inter Frame Gap (IFG) | 12 |
|
+ | | | |
|
+
+---+--------------------------------+----------------+---------------------------------------------------------------------------+
+ | 5 | Total | 24 |
|
+ | | | |
|
+
+---+--------------------------------+----------------+---------------------------------------------------------------------------+
Traffic Shaping
"""""""""""""""
@@ -610,78 +610,78 @@ Each token bucket is implemented using one saturated
counter that keeps track of
The token bucket generic parameters and operations are presented in Table 6
and Table 7.
-.. _pg_table_6:
-
-**Table 6. Token Bucket Generic Operations**
-
-+---+------------------------+--------------------+---------------------------------------------------------+
-| # | Token Bucket Parameter | Unit | Description
|
-| | | |
|
-+===+========================+====================+=========================================================+
-| 1 | bucket_rate | Credits per second | Rate of adding credits to
the bucket. |
-| | | |
|
-+---+------------------------+--------------------+---------------------------------------------------------+
-| 2 | bucket_size | Credits | Max number of credits that
can be stored in the bucket. |
-| | | |
|
-+---+------------------------+--------------------+---------------------------------------------------------+
-
-.. _pg_table_7:
-
-**Table 7. Token Bucket Generic Parameters**
-
-+---+------------------------+------------------------------------------------------------------------------+
-| # | Token Bucket Operation | Description
|
-| | |
|
-+===+========================+==============================================================================+
-| 1 | Initialization | Bucket set to a predefined value, e.g. zero or
half of the bucket size. |
-| | |
|
-+---+------------------------+------------------------------------------------------------------------------+
-| 2 | Credit update | Credits are added to the bucket on top of
existing ones, either periodically |
-| | | or on demand, based on the bucket_rate. Credits
cannot exceed the upper |
-| | | limit defined by the bucket_size, so any
credits to be added to the bucket |
-| | | while the bucket is full are dropped.
|
-| | |
|
-+---+------------------------+------------------------------------------------------------------------------+
-| 3 | Credit consumption | As result of packet scheduling, the necessary
number of credits is removed |
-| | | from the bucket. The packet can only be sent if
enough credits are in the |
-| | | bucket to send the full packet (packet bytes
and framing overhead for the |
-| | | packet).
|
-| | |
|
-+---+------------------------+------------------------------------------------------------------------------+
+.. _table_qos_6:
+
+.. table:: Token Bucket Generic Operations
+
+
+---+------------------------+--------------------+---------------------------------------------------------+
+ | # | Token Bucket Parameter | Unit | Description
|
+ | | | |
|
+
+===+========================+====================+=========================================================+
+ | 1 | bucket_rate | Credits per second | Rate of adding credits
to the bucket. |
+ | | | |
|
+
+---+------------------------+--------------------+---------------------------------------------------------+
+ | 2 | bucket_size | Credits | Max number of credits
that can be stored in the bucket. |
+ | | | |
|
+
+---+------------------------+--------------------+---------------------------------------------------------+
+
+.. _table_qos_7:
+
+.. table:: Token Bucket Generic Parameters
+
+
+---+------------------------+------------------------------------------------------------------------------+
+ | # | Token Bucket Operation | Description
|
+ | | |
|
+
+===+========================+==============================================================================+
+ | 1 | Initialization | Bucket set to a predefined value, e.g. zero
or half of the bucket size. |
+ | | |
|
+
+---+------------------------+------------------------------------------------------------------------------+
+ | 2 | Credit update | Credits are added to the bucket on top of
existing ones, either periodically |
+ | | | or on demand, based on the bucket_rate.
Credits cannot exceed the upper |
+ | | | limit defined by the bucket_size, so any
credits to be added to the bucket |
+ | | | while the bucket is full are dropped.
|
+ | | |
|
+
+---+------------------------+------------------------------------------------------------------------------+
+ | 3 | Credit consumption | As result of packet scheduling, the
necessary number of credits is removed |
+ | | | from the bucket. The packet can only be sent
if enough credits are in the |
+ | | | bucket to send the full packet (packet bytes
and framing overhead for the |
+ | | | packet).
|
+ | | |
|
+
+---+------------------------+------------------------------------------------------------------------------+
To implement the token bucket generic operations described above,
the current design uses the persistent data structure presented in,
while the implementation of the token bucket operations is described in Table
9.
-.. _pg_table_8:
-
-**Table 8. Token Bucket Persistent Data Structure**
-
-+---+------------------------+-------+----------------------------------------------------------------------+
-| # | Token bucket field | Unit | Description
|
-| | | |
|
-+===+========================+=======+======================================================================+
-| 1 | tb_time | Bytes | Time of the last credit update.
Measured in bytes instead of seconds |
-| | | | or CPU cycles for ease of credit
consumption operation |
-| | | | (as the current time is also maintained
in bytes). |
-| | | |
|
-| | | | See Section 26.2.4.5.1 "Internal Time
Reference" for an |
-| | | | explanation of why the time is
maintained in byte units. |
-| | | |
|
-+---+------------------------+-------+----------------------------------------------------------------------+
-| 2 | tb_period | Bytes | Time period that should elapse since
the last credit update in order |
-| | | | for the bucket to be awarded
tb_credits_per_period worth or credits. |
-| | | |
|
-+---+------------------------+-------+----------------------------------------------------------------------+
-| 3 | tb_credits_per_period | Bytes | Credit allowance per tb_period.
|
-| | | |
|
-+---+------------------------+-------+----------------------------------------------------------------------+
-| 4 | tb_size | Bytes | Bucket size, i.e. upper limit for the
tb_credits. |
-| | | |
|
-+---+------------------------+-------+----------------------------------------------------------------------+
-| 5 | tb_credits | Bytes | Number of credits currently in the
bucket. |
-| | | |
|
-+---+------------------------+-------+----------------------------------------------------------------------+
+.. _table_qos_8:
+
+.. table:: Token Bucket Persistent Data Structure
+
+
+---+------------------------+-------+----------------------------------------------------------------------+
+ | # | Token bucket field | Unit | Description
|
+ | | | |
|
+
+===+========================+=======+======================================================================+
+ | 1 | tb_time | Bytes | Time of the last credit update.
Measured in bytes instead of seconds |
+ | | | | or CPU cycles for ease of credit
consumption operation |
+ | | | | (as the current time is also
maintained in bytes). |
+ | | | |
|
+ | | | | See Section 26.2.4.5.1 "Internal
Time Reference" for an |
+ | | | | explanation of why the time is
maintained in byte units. |
+ | | | |
|
+
+---+------------------------+-------+----------------------------------------------------------------------+
+ | 2 | tb_period | Bytes | Time period that should elapse since
the last credit update in order |
+ | | | | for the bucket to be awarded
tb_credits_per_period worth or credits. |
+ | | | |
|
+
+---+------------------------+-------+----------------------------------------------------------------------+
+ | 3 | tb_credits_per_period | Bytes | Credit allowance per tb_period.
|
+ | | | |
|
+
+---+------------------------+-------+----------------------------------------------------------------------+
+ | 4 | tb_size | Bytes | Bucket size, i.e. upper limit for
the tb_credits. |
+ | | | |
|
+
+---+------------------------+-------+----------------------------------------------------------------------+
+ | 5 | tb_credits | Bytes | Number of credits currently in the
bucket. |
+ | | | |
|
+
+---+------------------------+-------+----------------------------------------------------------------------+
The bucket rate (in bytes per second) can be computed with the following
formula:
@@ -689,65 +689,65 @@ The bucket rate (in bytes per second) can be computed
with the following formula
where, r = port line rate (in bytes per second).
-.. _pg_table_9:
-
-**Table 9. Token Bucket Operations**
-
-+---+-------------------------+-----------------------------------------------------------------------------+
-| # | Token bucket operation | Description
|
-| | |
|
-+===+=========================+=============================================================================+
-| 1 | Initialization | *tb_credits = 0; or tb_credits = tb_size / 2;*
|
-| | |
|
-+---+-------------------------+-----------------------------------------------------------------------------+
-| 2 | Credit update | Credit update options:
|
-| | |
|
-| | | * Every time a packet is sent for a port,
update the credits of all the |
-| | | the subports and pipes of that port. Not
feasible. |
-| | |
|
-| | | * Every time a packet is sent, update the
credits for the pipe and |
-| | | subport. Very accurate, but not needed (a
lot of calculations). |
-| | |
|
-| | | * Every time a pipe is selected (that is,
picked by one |
-| | | of the grinders), update the credits for
the pipe and its subport. |
-| | |
|
-| | | The current implementation is using option 3.
According to Section |
-| | | 26.2.4.4 "Dequeue State Machine", the pipe and
subport credits are |
-| | | updated every time a pipe is selected by the
dequeue process before the |
-| | | pipe and subport credits are actually used.
|
-| | |
|
-| | | The implementation uses a tradeoff between
accuracy and speed by updating |
-| | | the bucket credits only when at least a full
*tb_period* has elapsed since |
-| | | the last update.
|
-| | |
|
-| | | * Full accuracy can be achieved by selecting
the value for *tb_period* |
-| | | for which *tb_credits_per_period = 1*.
|
-| | |
|
-| | | * When full accuracy is not required, better
performance is achieved by |
-| | | setting *tb_credits* to a larger value.
|
-| | |
|
-| | | Update operations:
|
-| | |
|
-| | | * n_periods = (time - tb_time) / tb_period;
|
-| | |
|
-| | | * tb_credits += n_periods *
tb_credits_per_period; |
-| | |
|
-| | | * tb_credits = min(tb_credits, tb_size);
|
-| | |
|
-| | | * tb_time += n_periods * tb_period;
|
-| | |
|
-+---+-------------------------+-----------------------------------------------------------------------------+
-| 3 | Credit consumption | As result of packet scheduling, the necessary
number of credits is removed |
-| | (on packet scheduling) | from the bucket. The packet can only be sent
if enough credits are in the |
-| | | bucket to send the full packet (packet bytes
and framing overhead for the |
-| | | packet).
|
-| | |
|
-| | | Scheduling operations:
|
-| | |
|
-| | | pkt_credits = pkt_len + frame_overhead;
|
-| | | if (tb_credits >= pkt_credits){tb_credits -=
pkt_credits;} |
-| | |
|
-+---+-------------------------+-----------------------------------------------------------------------------+
+.. _table_qos_9:
+
+.. table:: Token Bucket Operations
+
+
+---+-------------------------+-----------------------------------------------------------------------------+
+ | # | Token bucket operation | Description
|
+ | | |
|
+
+===+=========================+=============================================================================+
+ | 1 | Initialization | *tb_credits = 0; or tb_credits = tb_size /
2;* |
+ | | |
|
+
+---+-------------------------+-----------------------------------------------------------------------------+
+ | 2 | Credit update | Credit update options:
|
+ | | |
|
+ | | | * Every time a packet is sent for a port,
update the credits of all the |
+ | | | the subports and pipes of that port.
Not feasible. |
+ | | |
|
+ | | | * Every time a packet is sent, update the
credits for the pipe and |
+ | | | subport. Very accurate, but not needed
(a lot of calculations). |
+ | | |
|
+ | | | * Every time a pipe is selected (that is,
picked by one |
+ | | | of the grinders), update the credits
for the pipe and its subport. |
+ | | |
|
+ | | | The current implementation is using option
3. According to Section |
+ | | | 26.2.4.4 "Dequeue State Machine", the pipe
and subport credits are |
+ | | | updated every time a pipe is selected by
the dequeue process before the |
+ | | | pipe and subport credits are actually used.
|
+ | | |
|
+ | | | The implementation uses a tradeoff between
accuracy and speed by updating |
+ | | | the bucket credits only when at least a
full *tb_period* has elapsed since |
+ | | | the last update.
|
+ | | |
|
+ | | | * Full accuracy can be achieved by
selecting the value for *tb_period* |
+ | | | for which *tb_credits_per_period = 1*.
|
+ | | |
|
+ | | | * When full accuracy is not required,
better performance is achieved by |
+ | | | setting *tb_credits* to a larger value.
|
+ | | |
|
+ | | | Update operations:
|
+ | | |
|
+ | | | * n_periods = (time - tb_time) /
tb_period; |
+ | | |
|
+ | | | * tb_credits += n_periods *
tb_credits_per_period; |
+ | | |
|
+ | | | * tb_credits = min(tb_credits, tb_size);
|
+ | | |
|
+ | | | * tb_time += n_periods * tb_period;
|
+ | | |
|
+
+---+-------------------------+-----------------------------------------------------------------------------+
+ | 3 | Credit consumption | As result of packet scheduling, the
necessary number of credits is removed |
+ | | (on packet scheduling) | from the bucket. The packet can only be
sent if enough credits are in the |
+ | | | bucket to send the full packet (packet
bytes and framing overhead for the |
+ | | | packet).
|
+ | | |
|
+ | | | Scheduling operations:
|
+ | | |
|
+ | | | pkt_credits = pkt_len + frame_overhead;
|
+ | | | if (tb_credits >= pkt_credits){tb_credits
-= pkt_credits;} |
+ | | |
|
+
+---+-------------------------+-----------------------------------------------------------------------------+
Traffic Classes
"""""""""""""""
@@ -772,175 +772,175 @@ pipe levels is enforced by periodically refilling the
subport / pipe traffic cla
out of which credits are consumed every time a packet is scheduled for that
subport / pipe,
as described in Table 10 and Table 11.
-.. _pg_table_10:
-
-**Table 10. Subport/Pipe Traffic Class Upper Limit Enforcement Persistent Data
Structure**
-
-+---+-----------------------+-------+-----------------------------------------------------------------------+
-| # | Subport or pipe field | Unit | Description
|
-| | | |
|
-+===+=======================+=======+=======================================================================+
-| 1 | tc_time | Bytes | Time of the next update (upper limit
refill) for the 4 TCs of the |
-| | | | current subport / pipe.
|
-| | | |
|
-| | | | See Section 26.2.4.5.1, "Internal Time
Reference" for the |
-| | | | explanation of why the time is
maintained in byte units. |
-| | | |
|
-+---+-----------------------+-------+-----------------------------------------------------------------------+
-| 2 | tc_period | Bytes | Time between two consecutive updates for
the 4 TCs of the current |
-| | | | subport / pipe. This is expected to be
many times bigger than the |
-| | | | typical value of the token bucket
tb_period. |
-| | | |
|
-+---+-----------------------+-------+-----------------------------------------------------------------------+
-| 3 | tc_credits_per_period | Bytes | Upper limit for the number of credits
allowed to be consumed by the |
-| | | | current TC during each enforcement
period tc_period. |
-| | | |
|
-+---+-----------------------+-------+-----------------------------------------------------------------------+
-| 4 | tc_credits | Bytes | Current upper limit for the number of
credits that can be consumed by |
-| | | | the current traffic class for the
remainder of the current |
-| | | | enforcement period.
|
-| | | |
|
-+---+-----------------------+-------+-----------------------------------------------------------------------+
-
-.. _pg_table_11:
-
-**Table 11. Subport/Pipe Traffic Class Upper Limit Enforcement Operations**
-
-+---+--------------------------+----------------------------------------------------------------------------+
-| # | Traffic Class Operation | Description
|
-| | |
|
-+===+==========================+============================================================================+
-| 1 | Initialization | tc_credits = tc_credits_per_period;
|
-| | |
|
-| | | tc_time = tc_period;
|
-| | |
|
-+---+--------------------------+----------------------------------------------------------------------------+
-| 2 | Credit update | Update operations:
|
-| | |
|
-| | | if (time >= tc_time) {
|
-| | |
|
-| | | tc_credits = tc_credits_per_period;
|
-| | |
|
-| | | tc_time = time + tc_period;
|
-| | |
|
-| | | }
|
-| | |
|
-+---+--------------------------+----------------------------------------------------------------------------+
-| 3 | Credit consumption | As result of packet scheduling, the TC limit
is decreased with the |
-| | (on packet scheduling) | necessary number of credits. The packet can
only be sent if enough credits |
-| | | are currently available in the TC limit to
send the full packet |
-| | | (packet bytes and framing overhead for the
packet). |
-| | |
|
-| | | Scheduling operations:
|
-| | |
|
-| | | pkt_credits = pk_len + frame_overhead;
|
-| | |
|
-| | | if (tc_credits >= pkt_credits) {tc_credits -=
pkt_credits;} |
-| | |
|
-+---+--------------------------+----------------------------------------------------------------------------+
+.. _table_qos_10:
+
+.. table:: Subport/Pipe Traffic Class Upper Limit Enforcement Persistent Data
Structure
+
+
+---+-----------------------+-------+-----------------------------------------------------------------------+
+ | # | Subport or pipe field | Unit | Description
|
+ | | | |
|
+
+===+=======================+=======+=======================================================================+
+ | 1 | tc_time | Bytes | Time of the next update (upper limit
refill) for the 4 TCs of the |
+ | | | | current subport / pipe.
|
+ | | | |
|
+ | | | | See Section 26.2.4.5.1, "Internal
Time Reference" for the |
+ | | | | explanation of why the time is
maintained in byte units. |
+ | | | |
|
+
+---+-----------------------+-------+-----------------------------------------------------------------------+
+ | 2 | tc_period | Bytes | Time between two consecutive updates
for the 4 TCs of the current |
+ | | | | subport / pipe. This is expected to
be many times bigger than the |
+ | | | | typical value of the token bucket
tb_period. |
+ | | | |
|
+
+---+-----------------------+-------+-----------------------------------------------------------------------+
+ | 3 | tc_credits_per_period | Bytes | Upper limit for the number of credits
allowed to be consumed by the |
+ | | | | current TC during each enforcement
period tc_period. |
+ | | | |
|
+
+---+-----------------------+-------+-----------------------------------------------------------------------+
+ | 4 | tc_credits | Bytes | Current upper limit for the number of
credits that can be consumed by |
+ | | | | the current traffic class for the
remainder of the current |
+ | | | | enforcement period.
|
+ | | | |
|
+
+---+-----------------------+-------+-----------------------------------------------------------------------+
+
+.. _table_qos_11:
+
+.. table:: Subport/Pipe Traffic Class Upper Limit Enforcement Operations
+
+
+---+--------------------------+----------------------------------------------------------------------------+
+ | # | Traffic Class Operation | Description
|
+ | | |
|
+
+===+==========================+============================================================================+
+ | 1 | Initialization | tc_credits = tc_credits_per_period;
|
+ | | |
|
+ | | | tc_time = tc_period;
|
+ | | |
|
+
+---+--------------------------+----------------------------------------------------------------------------+
+ | 2 | Credit update | Update operations:
|
+ | | |
|
+ | | | if (time >= tc_time) {
|
+ | | |
|
+ | | | tc_credits = tc_credits_per_period;
|
+ | | |
|
+ | | | tc_time = time + tc_period;
|
+ | | |
|
+ | | | }
|
+ | | |
|
+
+---+--------------------------+----------------------------------------------------------------------------+
+ | 3 | Credit consumption | As result of packet scheduling, the TC
limit is decreased with the |
+ | | (on packet scheduling) | necessary number of credits. The packet
can only be sent if enough credits |
+ | | | are currently available in the TC limit to
send the full packet |
+ | | | (packet bytes and framing overhead for the
packet). |
+ | | |
|
+ | | | Scheduling operations:
|
+ | | |
|
+ | | | pkt_credits = pk_len + frame_overhead;
|
+ | | |
|
+ | | | if (tc_credits >= pkt_credits) {tc_credits
-= pkt_credits;} |
+ | | |
|
+
+---+--------------------------+----------------------------------------------------------------------------+
Weighted Round Robin (WRR)
""""""""""""""""""""""""""
The evolution of the WRR design solution from simple to complex is shown in
Table 12.
-.. _pg_table_12:
-
-**Table 12. Weighted Round Robin (WRR)**
-
-+---+------------+-----------------+-------------+----------------------------------------------------------+
-| # | All Queues | Equal Weights | All Packets | Strategy
|
-| | Active? | for All Queues? | Equal? |
|
-+===+============+=================+=============+==========================================================+
-| 1 | Yes | Yes | Yes | **Byte level round robin**
|
-| | | | |
|
-| | | | | *Next queue* queue #i, i =
*(i + 1) % n* |
-| | | | |
|
-+---+------------+-----------------+-------------+----------------------------------------------------------+
-| 2 | Yes | Yes | No | **Packet level round
robin** |
-| | | | |
|
-| | | | | Consuming one byte from
queue #i requires consuming |
-| | | | | exactly one token for queue
#i. |
-| | | | |
|
-| | | | | T(i) = Accumulated number
of tokens previously consumed |
-| | | | | from queue #i. Every time a
packet is consumed from |
-| | | | | queue #i, T(i) is updated
as: T(i) += *pkt_len*. |
-| | | | |
|
-| | | | | *Next queue* : queue with
the smallest T. |
-| | | | |
|
-| | | | |
|
-+---+------------+-----------------+-------------+----------------------------------------------------------+
-| 3 | Yes | No | No | **Packet level weighted
round robin** |
-| | | | |
|
-| | | | | This case can be reduced to
the previous case by |
-| | | | | introducing a cost per byte
that is different for each |
-| | | | | queue. Queues with lower
weights have a higher cost per |
-| | | | | byte. This way, it is still
meaningful to compare the |
-| | | | | consumption amongst
different queues in order to select |
-| | | | | the next queue.
|
-| | | | |
|
-| | | | | w(i) = Weight of queue #i
|
-| | | | |
|
-| | | | | t(i) = Tokens per byte for
queue #i, defined as the |
-| | | | | inverse weight of queue #i.
|
-| | | | | For example, if w[0..3] =
[1:2:4:8], |
-| | | | | then t[0..3] = [8:4:2:1];
if w[0..3] = [1:4:15:20], |
-| | | | | then t[0..3] = [60:15:4:3].
|
-| | | | | Consuming one byte from
queue #i requires consuming t(i) |
-| | | | | tokens for queue #i.
|
-| | | | |
|
-| | | | | T(i) = Accumulated number
of tokens previously consumed |
-| | | | | from queue #i. Every time a
packet is consumed from |
-| | | | | queue #i, T(i) is updated
as: *T(i) += pkt_len * t(i)*. |
-| | | | | *Next queue* : queue with
the smallest T. |
-| | | | |
|
-+---+------------+-----------------+-------------+----------------------------------------------------------+
-| 4 | No | No | No | **Packet level weighted
round robin with variable queue |
-| | | | | status**
|
-| | | | |
|
-| | | | | Reduce this case to the
previous case by setting the |
-| | | | | consumption of inactive
queues to a high number, so that |
-| | | | | the inactive queues will
never be selected by the |
-| | | | | smallest T logic.
|
-| | | | |
|
-| | | | | To prevent T from
overflowing as result of successive |
-| | | | | accumulations, T(i) is
truncated after each packet |
-| | | | | consumption for all queues.
|
-| | | | | For example, T[0..3] =
[1000, 1100, 1200, 1300] |
-| | | | | is truncated to T[0..3] =
[0, 100, 200, 300] |
-| | | | | by subtracting the min T
from T(i), i = 0..n. |
-| | | | |
|
-| | | | | This requires having at
least one active queue in the |
-| | | | | set of input queues, which
is guaranteed by the dequeue |
-| | | | | state machine never
selecting an inactive traffic class. |
-| | | | |
|
-| | | | | *mask(i) = Saturation mask
for queue #i, defined as:* |
-| | | | |
|
-| | | | | mask(i) = (queue #i is
active)? 0 : 0xFFFFFFFF; |
-| | | | |
|
-| | | | | w(i) = Weight of queue #i
|
-| | | | |
|
-| | | | | t(i) = Tokens per byte for
queue #i, defined as the |
-| | | | | inverse weight of queue #i.
|
-| | | | |
|
-| | | | | T(i) = Accumulated numbers
of tokens previously consumed |
-| | | | | from queue #i.
|
-| | | | |
|
-| | | | | *Next queue* : queue with
smallest T. |
-| | | | |
|
-| | | | | Before packet consumption
from queue #i: |
-| | | | |
|
-| | | | | *T(i) |= mask(i)*
|
-| | | | |
|
-| | | | | After packet consumption
from queue #i: |
-| | | | |
|
-| | | | | T(j) -= T(i), j != i
|
-| | | | |
|
-| | | | | T(i) = pkt_len * t(i)
|
-| | | | |
|
-| | | | | Note: T(j) uses the T(i)
value before T(i) is updated. |
-| | | | |
|
-+---+------------+-----------------+-------------+----------------------------------------------------------+
+.. _table_qos_12:
+
+.. table:: Weighted Round Robin (WRR)
+
+
+---+------------+-----------------+-------------+----------------------------------------------------------+
+ | # | All Queues | Equal Weights | All Packets | Strategy
|
+ | | Active? | for All Queues? | Equal? |
|
+
+===+============+=================+=============+==========================================================+
+ | 1 | Yes | Yes | Yes | **Byte level round
robin** |
+ | | | | |
|
+ | | | | | *Next queue* queue #i,
i = *(i + 1) % n* |
+ | | | | |
|
+
+---+------------+-----------------+-------------+----------------------------------------------------------+
+ | 2 | Yes | Yes | No | **Packet level round
robin** |
+ | | | | |
|
+ | | | | | Consuming one byte from
queue #i requires consuming |
+ | | | | | exactly one token for
queue #i. |
+ | | | | |
|
+ | | | | | T(i) = Accumulated
number of tokens previously consumed |
+ | | | | | from queue #i. Every
time a packet is consumed from |
+ | | | | | queue #i, T(i) is
updated as: T(i) += *pkt_len*. |
+ | | | | |
|
+ | | | | | *Next queue* : queue
with the smallest T. |
+ | | | | |
|
+ | | | | |
|
+
+---+------------+-----------------+-------------+----------------------------------------------------------+
+ | 3 | Yes | No | No | **Packet level weighted
round robin** |
+ | | | | |
|
+ | | | | | This case can be reduced
to the previous case by |
+ | | | | | introducing a cost per
byte that is different for each |
+ | | | | | queue. Queues with lower
weights have a higher cost per |
+ | | | | | byte. This way, it is
still meaningful to compare the |
+ | | | | | consumption amongst
different queues in order to select |
+ | | | | | the next queue.
|
+ | | | | |
|
+ | | | | | w(i) = Weight of queue
#i |
+ | | | | |
|
+ | | | | | t(i) = Tokens per byte
for queue #i, defined as the |
+ | | | | | inverse weight of queue
#i. |
+ | | | | | For example, if w[0..3]
= [1:2:4:8], |
+ | | | | | then t[0..3] =
[8:4:2:1]; if w[0..3] = [1:4:15:20], |
+ | | | | | then t[0..3] =
[60:15:4:3]. |
+ | | | | | Consuming one byte from
queue #i requires consuming t(i) |
+ | | | | | tokens for queue #i.
|
+ | | | | |
|
+ | | | | | T(i) = Accumulated
number of tokens previously consumed |
+ | | | | | from queue #i. Every
time a packet is consumed from |
+ | | | | | queue #i, T(i) is
updated as: *T(i) += pkt_len * t(i)*. |
+ | | | | | *Next queue* : queue
with the smallest T. |
+ | | | | |
|
+
+---+------------+-----------------+-------------+----------------------------------------------------------+
+ | 4 | No | No | No | **Packet level weighted
round robin with variable queue |
+ | | | | | status**
|
+ | | | | |
|
+ | | | | | Reduce this case to the
previous case by setting the |
+ | | | | | consumption of inactive
queues to a high number, so that |
+ | | | | | the inactive queues will
never be selected by the |
+ | | | | | smallest T logic.
|
+ | | | | |
|
+ | | | | | To prevent T from
overflowing as result of successive |
+ | | | | | accumulations, T(i) is
truncated after each packet |
+ | | | | | consumption for all
queues. |
+ | | | | | For example, T[0..3] =
[1000, 1100, 1200, 1300] |
+ | | | | | is truncated to T[0..3]
= [0, 100, 200, 300] |
+ | | | | | by subtracting the min T
from T(i), i = 0..n. |
+ | | | | |
|
+ | | | | | This requires having at
least one active queue in the |
+ | | | | | set of input queues,
which is guaranteed by the dequeue |
+ | | | | | state machine never
selecting an inactive traffic class. |
+ | | | | |
|
+ | | | | | *mask(i) = Saturation
mask for queue #i, defined as:* |
+ | | | | |
|
+ | | | | | mask(i) = (queue #i is
active)? 0 : 0xFFFFFFFF; |
+ | | | | |
|
+ | | | | | w(i) = Weight of queue
#i |
+ | | | | |
|
+ | | | | | t(i) = Tokens per byte
for queue #i, defined as the |
+ | | | | | inverse weight of queue
#i. |
+ | | | | |
|
+ | | | | | T(i) = Accumulated
numbers of tokens previously consumed |
+ | | | | | from queue #i.
|
+ | | | | |
|
+ | | | | | *Next queue* : queue
with smallest T. |
+ | | | | |
|
+ | | | | | Before packet
consumption from queue #i: |
+ | | | | |
|
+ | | | | | *T(i) |= mask(i)*
|
+ | | | | |
|
+ | | | | | After packet consumption
from queue #i: |
+ | | | | |
|
+ | | | | | T(j) -= T(i), j != i
|
+ | | | | |
|
+ | | | | | T(i) = pkt_len * t(i)
|
+ | | | | |
|
+ | | | | | Note: T(j) uses the T(i)
value before T(i) is updated. |
+ | | | | |
|
+
+---+------------+-----------------+-------------+----------------------------------------------------------+
Subport Traffic Class Oversubscription
""""""""""""""""""""""""""""""""""""""
@@ -969,40 +969,40 @@ Solution Space
summarizes some of the possible approaches for handling this problem,
with the third approach selected for implementation.
-.. _pg_table_13:
-
-**Table 13. Subport Traffic Class Oversubscription**
-
-+-----+---------------------------+-------------------------------------------------------------------------+
-| No. | Approach | Description
|
-| | |
|
-+=====+===========================+=========================================================================+
-| 1 | Don't care | First come, first served.
|
-| | |
|
-| | | This approach is not fair amongst subport
member pipes, as pipes that |
-| | | are served first will use up as much
bandwidth for TC X as they need, |
-| | | while pipes that are served later will
receive poor service due to |
-| | | bandwidth for TC X at the subport level
being scarce. |
-| | |
|
-+-----+---------------------------+-------------------------------------------------------------------------+
-| 2 | Scale down all pipes | All pipes within the subport have their
bandwidth limit for TC X scaled |
-| | | down by the same factor.
|
-| | |
|
-| | | This approach is not fair among subport
member pipes, as the low end |
-| | | pipes (that is, pipes configured with low
bandwidth) can potentially |
-| | | experience severe service degradation that
might render their service |
-| | | unusable (if available bandwidth for these
pipes drops below the |
-| | | minimum requirements for a workable
service), while the service |
-| | | degradation for high end pipes might not
be noticeable at all. |
-| | |
|
-+-----+---------------------------+-------------------------------------------------------------------------+
-| 3 | Cap the high demand pipes | Each subport member pipe receives an equal
share of the bandwidth |
-| | | available at run-time for TC X at the
subport level. Any bandwidth left |
-| | | unused by the low-demand pipes is
redistributed in equal portions to |
-| | | the high-demand pipes. This way, the
high-demand pipes are truncated |
-| | | while the low-demand pipes are not
impacted. |
-| | |
|
-+-----+---------------------------+-------------------------------------------------------------------------+
+.. _table_qos_13:
+
+.. table:: Subport Traffic Class Oversubscription
+
+
+-----+---------------------------+-------------------------------------------------------------------------+
+ | No. | Approach | Description
|
+ | | |
|
+
+=====+===========================+=========================================================================+
+ | 1 | Don't care | First come, first served.
|
+ | | |
|
+ | | | This approach is not fair amongst
subport member pipes, as pipes that |
+ | | | are served first will use up as much
bandwidth for TC X as they need, |
+ | | | while pipes that are served later will
receive poor service due to |
+ | | | bandwidth for TC X at the subport level
being scarce. |
+ | | |
|
+
+-----+---------------------------+-------------------------------------------------------------------------+
+ | 2 | Scale down all pipes | All pipes within the subport have their
bandwidth limit for TC X scaled |
+ | | | down by the same factor.
|
+ | | |
|
+ | | | This approach is not fair among subport
member pipes, as the low end |
+ | | | pipes (that is, pipes configured with
low bandwidth) can potentially |
+ | | | experience severe service degradation
that might render their service |
+ | | | unusable (if available bandwidth for
these pipes drops below the |
+ | | | minimum requirements for a workable
service), while the service |
+ | | | degradation for high end pipes might
not be noticeable at all. |
+ | | |
|
+
+-----+---------------------------+-------------------------------------------------------------------------+
+ | 3 | Cap the high demand pipes | Each subport member pipe receives an
equal share of the bandwidth |
+ | | | available at run-time for TC X at the
subport level. Any bandwidth left |
+ | | | unused by the low-demand pipes is
redistributed in equal portions to |
+ | | | the high-demand pipes. This way, the
high-demand pipes are truncated |
+ | | | while the low-demand pipes are not
impacted. |
+ | | |
|
+
+-----+---------------------------+-------------------------------------------------------------------------+
Typically, the subport TC oversubscription feature is enabled only for the
lowest priority traffic class (TC 3),
which is typically used for best effort traffic,
@@ -1037,98 +1037,98 @@ When demand is low, the watermark is set high to
prevent it from impeding the su
The highest value for the watermark is picked as the highest rate configured
for a subport member pipe.
Table 15 illustrates the watermark operation.
-.. _pg_table_14:
-
-**Table 14. Watermark Propagation from Subport Level to Member Pipes at the
Beginning of Each Traffic Class Upper Limit Enforcement Period**
-
-+-----+---------------------------------+----------------------------------------------------+
-| No. | Subport Traffic Class Operation | Description
|
-| | |
|
-+=====+=================================+====================================================+
-| 1 | Initialization | **Subport level**:
subport_period_id= 0 |
-| | |
|
-| | | **Pipe level**: pipe_period_id = 0
|
-| | |
|
-+-----+---------------------------------+----------------------------------------------------+
-| 2 | Credit update | **Subport Level**:
|
-| | |
|
-| | | if (time>=subport_tc_time)
|
-| | |
|
-| | | {
|
-| | | subport_wm =
water_mark_update(); |
-| | |
|
-| | | subport_tc_time = time +
subport_tc_period; |
-| | |
|
-| | | subport_period_id++;
|
-| | |
|
-| | | }
|
-| | |
|
-| | | **Pipelevel:**
|
-| | |
|
-| | | if(pipe_period_id !=
subport_period_id) |
-| | |
|
-| | | {
|
-| | |
|
-| | | pipe_ov_credits = subport_wm \*
pipe_weight; |
-| | |
|
-| | | pipe_period_id =
subport_period_id; |
-| | |
|
-| | | }
|
-| | |
|
-+-----+---------------------------------+----------------------------------------------------+
-| 3 | Credit consumption | **Pipe level:**
|
-| | (on packet scheduling) |
|
-| | | pkt_credits = pk_len +
frame_overhead; |
-| | |
|
-| | | if(pipe_ov_credits >= pkt_credits{
|
-| | |
|
-| | | pipe_ov_credits -= pkt_credits;
|
-| | |
|
-| | | }
|
-| | |
|
-+-----+---------------------------------+----------------------------------------------------+
-
-.. _pg_table_15:
-
-**Table 15. Watermark Calculation**
-
-+-----+------------------+----------------------------------------------------------------------------------+
-| No. | Subport Traffic | Description
|
-| | Class Operation |
|
-+=====+==================+==================================================================================+
-| 1 | Initialization | **Subport level:**
|
-| | |
|
-| | | wm = WM_MAX
|
-| | |
|
-+-----+------------------+----------------------------------------------------------------------------------+
-| 2 | Credit update | **Subport level (water_mark_update):**
|
-| | |
|
-| | | tc0_cons = subport_tc0_credits_per_period -
subport_tc0_credits; |
-| | |
|
-| | | tc1_cons = subport_tc1_credits_per_period -
subport_tc1_credits; |
-| | |
|
-| | | tc2_cons = subport_tc2_credits_per_period -
subport_tc2_credits; |
-| | |
|
-| | | tc3_cons = subport_tc3_credits_per_period -
subport_tc3_credits; |
-| | |
|
-| | | tc3_cons_max = subport_tc3_credits_per_period -
(tc0_cons + tc1_cons + |
-| | | tc2_cons);
|
-| | |
|
-| | | if(tc3_consumption > (tc3_consumption_max - MTU)){
|
-| | |
|
-| | | wm -= wm >> 7;
|
-| | |
|
-| | | if(wm < WM_MIN) wm = WM_MIN;
|
-| | |
|
-| | | } else {
|
-| | |
|
-| | | wm += (wm >> 7) + 1;
|
-| | |
|
-| | | if(wm > WM_MAX) wm = WM_MAX;
|
-| | |
|
-| | | }
|
-| | |
|
-+-----+------------------+----------------------------------------------------------------------------------+
+.. _table_qos_14:
+
+.. table:: Watermark Propagation from Subport Level to Member Pipes at the
Beginning of Each Traffic Class Upper Limit Enforcement Period
+
+
+-----+---------------------------------+----------------------------------------------------+
+ | No. | Subport Traffic Class Operation | Description
|
+ | | |
|
+
+=====+=================================+====================================================+
+ | 1 | Initialization | **Subport level**:
subport_period_id= 0 |
+ | | |
|
+ | | | **Pipe level**: pipe_period_id =
0 |
+ | | |
|
+
+-----+---------------------------------+----------------------------------------------------+
+ | 2 | Credit update | **Subport Level**:
|
+ | | |
|
+ | | | if (time>=subport_tc_time)
|
+ | | |
|
+ | | | {
|
+ | | | subport_wm =
water_mark_update(); |
+ | | |
|
+ | | | subport_tc_time = time +
subport_tc_period; |
+ | | |
|
+ | | | subport_period_id++;
|
+ | | |
|
+ | | | }
|
+ | | |
|
+ | | | **Pipelevel:**
|
+ | | |
|
+ | | | if(pipe_period_id !=
subport_period_id) |
+ | | |
|
+ | | | {
|
+ | | |
|
+ | | | pipe_ov_credits = subport_wm
\* pipe_weight; |
+ | | |
|
+ | | | pipe_period_id =
subport_period_id; |
+ | | |
|
+ | | | }
|
+ | | |
|
+
+-----+---------------------------------+----------------------------------------------------+
+ | 3 | Credit consumption | **Pipe level:**
|
+ | | (on packet scheduling) |
|
+ | | | pkt_credits = pk_len +
frame_overhead; |
+ | | |
|
+ | | | if(pipe_ov_credits >=
pkt_credits{ |
+ | | |
|
+ | | | pipe_ov_credits -=
pkt_credits; |
+ | | |
|
+ | | | }
|
+ | | |
|
+
+-----+---------------------------------+----------------------------------------------------+
+
+.. _table_qos_15:
+
+.. table:: Watermark Calculation
+
+
+-----+------------------+----------------------------------------------------------------------------------+
+ | No. | Subport Traffic | Description
|
+ | | Class Operation |
|
+
+=====+==================+==================================================================================+
+ | 1 | Initialization | **Subport level:**
|
+ | | |
|
+ | | | wm = WM_MAX
|
+ | | |
|
+
+-----+------------------+----------------------------------------------------------------------------------+
+ | 2 | Credit update | **Subport level (water_mark_update):**
|
+ | | |
|
+ | | | tc0_cons = subport_tc0_credits_per_period -
subport_tc0_credits; |
+ | | |
|
+ | | | tc1_cons = subport_tc1_credits_per_period -
subport_tc1_credits; |
+ | | |
|
+ | | | tc2_cons = subport_tc2_credits_per_period -
subport_tc2_credits; |
+ | | |
|
+ | | | tc3_cons = subport_tc3_credits_per_period -
subport_tc3_credits; |
+ | | |
|
+ | | | tc3_cons_max = subport_tc3_credits_per_period -
(tc0_cons + tc1_cons + |
+ | | | tc2_cons);
|
+ | | |
|
+ | | | if(tc3_consumption > (tc3_consumption_max -
MTU)){ |
+ | | |
|
+ | | | wm -= wm >> 7;
|
+ | | |
|
+ | | | if(wm < WM_MIN) wm = WM_MIN;
|
+ | | |
|
+ | | | } else {
|
+ | | |
|
+ | | | wm += (wm >> 7) + 1;
|
+ | | |
|
+ | | | if(wm > WM_MAX) wm = WM_MAX;
|
+ | | |
|
+ | | | }
|
+ | | |
|
+
+-----+------------------+----------------------------------------------------------------------------------+
Worst Case Scenarios for Performance
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -1227,26 +1227,26 @@ Configuration
A RED configuration contains the parameters given in Table 16.
-.. _pg_table_16:
-
-**Table 16. RED Configuration Parameters**
-
-+--------------------------+---------+---------+------------------+
-| Parameter | Minimum | Maximum | Typical |
-| | | | |
-+==========================+=========+=========+==================+
-| Minimum Threshold | 0 | 1022 | 1/4 x queue size |
-| | | | |
-+--------------------------+---------+---------+------------------+
-| Maximum Threshold | 1 | 1023 | 1/2 x queue size |
-| | | | |
-+--------------------------+---------+---------+------------------+
-| Inverse Mark Probability | 1 | 255 | 10 |
-| | | | |
-+--------------------------+---------+---------+------------------+
-| EWMA Filter Weight | 1 | 12 | 9 |
-| | | | |
-+--------------------------+---------+---------+------------------+
+.. _table_qos_16:
+
+.. table:: RED Configuration Parameters
+
+ +--------------------------+---------+---------+------------------+
+ | Parameter | Minimum | Maximum | Typical |
+ | | | | |
+ +==========================+=========+=========+==================+
+ | Minimum Threshold | 0 | 1022 | 1/4 x queue size |
+ | | | | |
+ +--------------------------+---------+---------+------------------+
+ | Maximum Threshold | 1 | 1023 | 1/2 x queue size |
+ | | | | |
+ +--------------------------+---------+---------+------------------+
+ | Inverse Mark Probability | 1 | 255 | 10 |
+ | | | | |
+ +--------------------------+---------+---------+------------------+
+ | EWMA Filter Weight | 1 | 12 | 9 |
+ | | | | |
+ +--------------------------+---------+---------+------------------+
The meaning of these parameters is explained in more detail in the following
sections.
The format of these parameters as specified to the dropper module API
@@ -1393,33 +1393,33 @@ also achieves accuracy comparable to floating-point
evaluation.
Table 17 lists the performance of each of these alternative approaches
relative to the method that is used in the dropper.
As can be seen, the floating-point implementation achieved the worst
performance.
-.. _pg_table_17:
-
-**Table 17. Relative Performance of Alternative Approaches**
-
-+------------------------------------------------------------------------------------+----------------------+
-| Method
| Relative Performance |
-|
| |
-+====================================================================================+======================+
-| Current dropper method (see :ref:`Section 23.3.2.1.3 <Dropper>`)
| 100% |
-|
| |
-+------------------------------------------------------------------------------------+----------------------+
-| Fixed-point method with small (512B) look-up table
| 148% |
-|
| |
-+------------------------------------------------------------------------------------+----------------------+
-| SSE method with small (512B) look-up table
| 114% |
-|
| |
-+------------------------------------------------------------------------------------+----------------------+
-| Large (76KB) look-up table
| 118% |
-|
| |
-+------------------------------------------------------------------------------------+----------------------+
-| Floating-point
| 595% |
-|
| |
-+------------------------------------------------------------------------------------+----------------------+
-| **Note**: In this case, since performance is expressed as time spent
executing the operation in a |
-| specific condition, any relative performance value above 100% runs slower
than the reference method. |
-|
|
-+-----------------------------------------------------------------------------------------------------------+
+.. _table_qos_17:
+
+.. table:: Relative Performance of Alternative Approaches
+
+
+------------------------------------------------------------------------------------+----------------------+
+ | Method
| Relative Performance |
+ |
| |
+
+====================================================================================+======================+
+ | Current dropper method (see :ref:`Section 23.3.2.1.3 <Dropper>`)
| 100% |
+ |
| |
+
+------------------------------------------------------------------------------------+----------------------+
+ | Fixed-point method with small (512B) look-up table
| 148% |
+ |
| |
+
+------------------------------------------------------------------------------------+----------------------+
+ | SSE method with small (512B) look-up table
| 114% |
+ |
| |
+
+------------------------------------------------------------------------------------+----------------------+
+ | Large (76KB) look-up table
| 118% |
+ |
| |
+
+------------------------------------------------------------------------------------+----------------------+
+ | Floating-point
| 595% |
+ |
| |
+
+------------------------------------------------------------------------------------+----------------------+
+ | **Note**: In this case, since performance is expressed as time spent
executing the operation in a |
+ | specific condition, any relative performance value above 100% runs slower
than the reference method. |
+ |
|
+
+-----------------------------------------------------------------------------------------------------------+
Drop Decision Block
^^^^^^^^^^^^^^^^^^^
@@ -1585,26 +1585,26 @@ A sample RED configuration is shown below. In this
example, the queue size is 64
With this configuration file, the RED configuration that applies to green,
yellow and red packets in traffic class 0 is shown in Table 18.
-.. _pg_table_18:
-
-**Table 18. RED Configuration Corresponding to RED Configuration File**
-
-+--------------------+--------------------+-------+--------+-----+
-| RED Parameter | Configuration Name | Green | Yellow | Red |
-| | | | | |
-+====================+====================+=======+========+=====+
-| Minimum Threshold | tc 0 wred min | 28 | 22 | 16 |
-| | | | | |
-+--------------------+--------------------+-------+--------+-----+
-| Maximum Threshold | tc 0 wred max | 32 | 32 | 32 |
-| | | | | |
-+--------------------+--------------------+-------+--------+-----+
-| Mark Probability | tc 0 wred inv prob | 10 | 10 | 10 |
-| | | | | |
-+--------------------+--------------------+-------+--------+-----+
-| EWMA Filter Weight | tc 0 wred weight | 9 | 9 | 9 |
-| | | | | |
-+--------------------+--------------------+-------+--------+-----+
+.. _table_qos_18:
+
+.. table:: RED Configuration Corresponding to RED Configuration File
+
+ +--------------------+--------------------+-------+--------+-----+
+ | RED Parameter | Configuration Name | Green | Yellow | Red |
+ | | | | | |
+ +====================+====================+=======+========+=====+
+ | Minimum Threshold | tc 0 wred min | 28 | 22 | 16 |
+ | | | | | |
+ +--------------------+--------------------+-------+--------+-----+
+ | Maximum Threshold | tc 0 wred max | 32 | 32 | 32 |
+ | | | | | |
+ +--------------------+--------------------+-------+--------+-----+
+ | Mark Probability | tc 0 wred inv prob | 10 | 10 | 10 |
+ | | | | | |
+ +--------------------+--------------------+-------+--------+-----+
+ | EWMA Filter Weight | tc 0 wred weight | 9 | 9 | 9 |
+ | | | | | |
+ +--------------------+--------------------+-------+--------+-----+
Application Programming Interface (API)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
diff --git a/doc/guides/sample_app_ug/index.rst
b/doc/guides/sample_app_ug/index.rst
index 745a7ac..e1a0c56 100644
--- a/doc/guides/sample_app_ug/index.rst
+++ b/doc/guides/sample_app_ug/index.rst
@@ -134,8 +134,8 @@ Sample Applications User Guide
**Tables**
-:ref:`Table 1.Output Traffic Marking <table_1>`
+:numref:`table_qos_metering_1` :ref:`table_qos_metering_1`
-:ref:`Table 2.Entity Types <table_2>`
+:numref:`table_qos_scheduler_1` :ref:`table_qos_scheduler_1`
-:ref:`Table 3.Table Types <table_3>`
+:numref:`table_test_pipeline_1` :ref:`table_test_pipeline_1`
diff --git a/doc/guides/sample_app_ug/qos_metering.rst
b/doc/guides/sample_app_ug/qos_metering.rst
index 344faf7..e1a6ac7 100644
--- a/doc/guides/sample_app_ug/qos_metering.rst
+++ b/doc/guides/sample_app_ug/qos_metering.rst
@@ -140,29 +140,29 @@ The traffic meter parameters are configured in the
application source code with
Assuming the input traffic is generated at line rate and all packets are 64
bytes Ethernet frames (IPv4 packet size of 46 bytes)
and green, the expected output traffic should be marked as shown in the
following table:
-.. _table_1:
-
-**Table 1. Output Traffic Marking**
-
-+-------------+------------------+-------------------+----------------+
-| **Mode** | **Green (Mpps)** | **Yellow (Mpps)** | **Red (Mpps)** |
-| | | | |
-+=============+==================+===================+================+
-| srTCM blind | 1 | 1 | 12.88 |
-| | | | |
-+-------------+------------------+-------------------+----------------+
-| srTCM color | 1 | 1 | 12.88 |
-| | | | |
-+-------------+------------------+-------------------+----------------+
-| trTCM blind | 1 | 0.5 | 13.38 |
-| | | | |
-+-------------+------------------+-------------------+----------------+
-| trTCM color | 1 | 0.5 | 13.38 |
-| | | | |
-+-------------+------------------+-------------------+----------------+
-| FWD | 14.88 | 0 | 0 |
-| | | | |
-+-------------+------------------+-------------------+----------------+
+.. _table_qos_metering_1:
+
+.. table:: Output Traffic Marking
+
+ +-------------+------------------+-------------------+----------------+
+ | **Mode** | **Green (Mpps)** | **Yellow (Mpps)** | **Red (Mpps)** |
+ | | | | |
+ +=============+==================+===================+================+
+ | srTCM blind | 1 | 1 | 12.88 |
+ | | | | |
+ +-------------+------------------+-------------------+----------------+
+ | srTCM color | 1 | 1 | 12.88 |
+ | | | | |
+ +-------------+------------------+-------------------+----------------+
+ | trTCM blind | 1 | 0.5 | 13.38 |
+ | | | | |
+ +-------------+------------------+-------------------+----------------+
+ | trTCM color | 1 | 0.5 | 13.38 |
+ | | | | |
+ +-------------+------------------+-------------------+----------------+
+ | FWD | 14.88 | 0 | 0 |
+ | | | | |
+ +-------------+------------------+-------------------+----------------+
To set up the policing scheme as desired, it is necessary to modify the main.h
source file,
where this policy is implemented as a static structure, as follows:
diff --git a/doc/guides/sample_app_ug/qos_scheduler.rst
b/doc/guides/sample_app_ug/qos_scheduler.rst
index 66c261c..ffa8ee2 100644
--- a/doc/guides/sample_app_ug/qos_scheduler.rst
+++ b/doc/guides/sample_app_ug/qos_scheduler.rst
@@ -321,28 +321,28 @@ The Port/Subport/Pipe/Traffic Class/Queue are the
hierarchical entities in a typ
The traffic flows that need to be configured are application dependent.
This application classifies based on the QinQ double VLAN tags and the IP
destination address as indicated in the following table.
-.. _table_2:
-
-**Table 2. Entity Types**
-
-+----------------+-------------------------+--------------------------------------------------+----------------------------------+
-| **Level Name** | **Siblings per Parent** | **QoS Functional Description**
| **Selected By** |
-| | |
| |
-+================+=========================+==================================================+==================================+
-| Port | - | Ethernet port
| Physical port |
-| | |
| |
-+----------------+-------------------------+--------------------------------------------------+----------------------------------+
-| Subport | Config (8) | Traffic shaped (token bucket)
| Outer VLAN tag |
-| | |
| |
-+----------------+-------------------------+--------------------------------------------------+----------------------------------+
-| Pipe | Config (4k) | Traffic shaped (token bucket)
| Inner VLAN tag |
-| | |
| |
-+----------------+-------------------------+--------------------------------------------------+----------------------------------+
-| Traffic Class | 4 | TCs of the same pipe services in
strict priority | Destination IP address (0.0.X.0) |
-| | |
| |
-+----------------+-------------------------+--------------------------------------------------+----------------------------------+
-| Queue | 4 | Queue of the same TC serviced in
WRR | Destination IP address (0.0.0.X) |
-| | |
| |
-+----------------+-------------------------+--------------------------------------------------+----------------------------------+
+.. _table_qos_scheduler_1:
+
+.. table:: Entity Types
+
+
+----------------+-------------------------+--------------------------------------------------+----------------------------------+
+ | **Level Name** | **Siblings per Parent** | **QoS Functional Description**
| **Selected By** |
+ | | |
| |
+
+================+=========================+==================================================+==================================+
+ | Port | - | Ethernet port
| Physical port |
+ | | |
| |
+
+----------------+-------------------------+--------------------------------------------------+----------------------------------+
+ | Subport | Config (8) | Traffic shaped (token bucket)
| Outer VLAN tag |
+ | | |
| |
+
+----------------+-------------------------+--------------------------------------------------+----------------------------------+
+ | Pipe | Config (4k) | Traffic shaped (token bucket)
| Inner VLAN tag |
+ | | |
| |
+
+----------------+-------------------------+--------------------------------------------------+----------------------------------+
+ | Traffic Class | 4 | TCs of the same pipe services
in strict priority | Destination IP address (0.0.X.0) |
+ | | |
| |
+
+----------------+-------------------------+--------------------------------------------------+----------------------------------+
+ | Queue | 4 | Queue of the same TC serviced
in WRR | Destination IP address (0.0.0.X) |
+ | | |
| |
+
+----------------+-------------------------+--------------------------------------------------+----------------------------------+
Please refer to the "QoS Scheduler" chapter in the *DPDK Programmer's Guide*
for more information about these parameters.
diff --git a/doc/guides/sample_app_ug/test_pipeline.rst
b/doc/guides/sample_app_ug/test_pipeline.rst
index fbc290c..872f8d4 100644
--- a/doc/guides/sample_app_ug/test_pipeline.rst
+++ b/doc/guides/sample_app_ug/test_pipeline.rst
@@ -113,157 +113,157 @@ For hash tables, the following parameters can be
selected:
* **Table type (e.g. hash-spec-16-ext or hash-spec-16-lru).**
The available options are ext (extendible bucket) or lru (least recently
used).
-.. _table_3:
-
-**Table 3. Table Types**
-
-+-------+------------------------+----------------------------------------------------------+-------------------------------------------------------+
-| **#** | **TABLE_TYPE** | **Description of Core B Table**
| **Pre-added Table Entries** |
-| | |
| |
-+=======+========================+==========================================================+=======================================================+
-| 1 | none | Core B is not implementing a DPDK pipeline.
| N/A |
-| | | Core B is implementing a pass-through from
its input set | |
-| | | of software queues to its output set of
software queues. | |
-| | |
| |
-+-------+------------------------+----------------------------------------------------------+-------------------------------------------------------+
-| 2 | stub | Stub table. Core B is implementing the same
pass-through | N/A |
-| | | functionality as described for the "none"
option by | |
-| | | using the DPDK Packet Framework by using
one | |
-| | | stub table for each input NIC port.
| |
-| | |
| |
-+-------+------------------------+----------------------------------------------------------+-------------------------------------------------------+
-| 3 | hash-[spec]-8-lru | LRU hash table with 8-byte key size and 16
million | 16 million entries are successfully added to the |
-| | | entries.
| hash table with the following key format: |
-| | |
| |
-| | |
| [4-byte index, 4 bytes of 0] |
-| | |
| |
-| | |
| The action configured for all table entries is |
-| | |
| "Sendto output port", with the output port index |
-| | |
| uniformly distributed for the range of output ports. |
-| | |
| |
-| | |
| The default table rule (used in the case of a lookup |
-| | |
| miss) is to drop the packet. |
-| | |
| |
-| | |
| At run time, core A is creating the following lookup |
-| | |
| key and storing it into the packet meta data for |
-| | |
| core B to use for table lookup: |
-| | |
| |
-| | |
| [destination IPv4 address, 4 bytes of 0] |
-| | |
| |
-+-------+------------------------+----------------------------------------------------------+-------------------------------------------------------+
-| 4 | hash-[spec]-8-ext | Extendible bucket hash table with 8-byte
key size | Same as hash-[spec]-8-lru table entries, above. |
-| | | and 16 million entries.
| |
-| | |
| |
-+-------+------------------------+----------------------------------------------------------+-------------------------------------------------------+
-| 5 | hash-[spec]-16-lru | LRU hash table with 16-byte key size and 16
million | 16 million entries are successfully added to the hash |
-| | | entries.
| table with the following key format: |
-| | |
| |
-| | |
| [4-byte index, 12 bytes of 0] |
-| | |
| |
-| | |
| The action configured for all table entries is |
-| | |
| "Send to output port", with the output port index |
-| | |
| uniformly distributed for the range of output ports. |
-| | |
| |
-| | |
| The default table rule (used in the case of a lookup |
-| | |
| miss) is to drop the packet. |
-| | |
| |
-| | |
| At run time, core A is creating the following lookup |
-| | |
| key and storing it into the packet meta data for core |
-| | |
| B to use for table lookup: |
-| | |
| |
-| | |
| [destination IPv4 address, 12 bytes of 0] |
-| | |
| |
-+-------+------------------------+----------------------------------------------------------+-------------------------------------------------------+
-| 6 | hash-[spec]-16-ext | Extendible bucket hash table with 16-byte
key size | Same as hash-[spec]-16-lru table entries, above. |
-| | | and 16 million entries.
| |
-| | |
| |
-+-------+------------------------+----------------------------------------------------------+-------------------------------------------------------+
-| 7 | hash-[spec]-32-lru | LRU hash table with 32-byte key size and 16
million | 16 million entries are successfully added to the hash |
-| | | entries.
| table with the following key format: |
-| | |
| |
-| | |
| [4-byte index, 28 bytes of 0]. |
-| | |
| |
-| | |
| The action configured for all table entries is |
-| | |
| "Send to output port", with the output port index |
-| | |
| uniformly distributed for the range of output ports. |
-| | |
| |
-| | |
| The default table rule (used in the case of a lookup |
-| | |
| miss) is to drop the packet. |
-| | |
| |
-| | |
| At run time, core A is creating the following lookup |
-| | |
| key and storing it into the packet meta data for |
-| | |
| Lpmcore B to use for table lookup: |
-| | |
| |
-| | |
| [destination IPv4 address, 28 bytes of 0] |
-| | |
| |
-+-------+------------------------+----------------------------------------------------------+-------------------------------------------------------+
-| 8 | hash-[spec]-32-ext | Extendible bucket hash table with 32-byte
key size | Same as hash-[spec]-32-lru table entries, above. |
-| | | and 16 million entries.
| |
-| | |
| |
-+-------+------------------------+----------------------------------------------------------+-------------------------------------------------------+
-| 9 | lpm | Longest Prefix Match (LPM) IPv4 table.
| In the case of two ports, two routes |
-| | |
| are added to the table: |
-| | |
| |
-| | |
| [0.0.0.0/9 => send to output port 0] |
-| | |
| |
-| | |
| [0.128.0.0/9 => send to output port 1] |
-| | |
| |
-| | |
| In case of four ports, four entries are added to the |
-| | |
| table: |
-| | |
| |
-| | |
| [0.0.0.0/10 => send to output port 0] |
-| | |
| |
-| | |
| [0.64.0.0/10 => send to output port 1] |
-| | |
| |
-| | |
| [0.128.0.0/10 => send to output port 2] |
-| | |
| |
-| | |
| [0.192.0.0/10 => send to output port 3] |
-| | |
| |
-| | |
| The default table rule (used in the case of a lookup |
-| | |
| miss) is to drop the packet. |
-| | |
| |
-| | |
| At run time, core A is storing the IPv4 destination |
-| | |
| within the packet meta data to be later used by core |
-| | |
| B as the lookup key. |
-| | |
| |
-+-------+------------------------+----------------------------------------------------------+-------------------------------------------------------+
-| 10 | acl | Access Control List (ACL) table
| In the case of two ports, two ACL rules are added to |
-| | |
| the table: |
-| | |
| |
-| | |
| [priority = 0 (highest), |
-| | |
| |
-| | |
| IPv4 source = ANY, |
-| | |
| |
-| | |
| IPv4 destination = 0.0.0.0/9, |
-| | |
| |
-| | |
| L4 protocol = ANY, |
-| | |
| |
-| | |
| TCP source port = ANY, |
-| | |
| |
-| | |
| TCP destination port = ANY |
-| | |
| |
-| | |
| => send to output port 0] |
-| | |
| |
-| | |
| |
-| | |
| [priority = 0 (highest), |
-| | |
| |
-| | |
| IPv4 source = ANY, |
-| | |
| |
-| | |
| IPv4 destination = 0.128.0.0/9, |
-| | |
| |
-| | |
| L4 protocol = ANY, |
-| | |
| |
-| | |
| TCP source port = ANY, |
-| | |
| |
-| | |
| TCP destination port = ANY |
-| | |
| |
-| | |
| => send to output port 0]. |
-| | |
| |
-| | |
| |
-| | |
| The default table rule (used in the case of a lookup |
-| | |
| miss) is to drop the packet. |
-| | |
| |
-+-------+------------------------+----------------------------------------------------------+-------------------------------------------------------+
+.. _table_test_pipeline_1:
+
+.. table:: Table Types
+
+
+-------+------------------------+----------------------------------------------------------+-------------------------------------------------------+
+ | **#** | **TABLE_TYPE** | **Description of Core B Table**
| **Pre-added Table Entries** |
+ | | |
| |
+
+=======+========================+==========================================================+=======================================================+
+ | 1 | none | Core B is not implementing a DPDK
pipeline. | N/A |
+ | | | Core B is implementing a pass-through
from its input set | |
+ | | | of software queues to its output set of
software queues. | |
+ | | |
| |
+
+-------+------------------------+----------------------------------------------------------+-------------------------------------------------------+
+ | 2 | stub | Stub table. Core B is implementing the
same pass-through | N/A |
+ | | | functionality as described for the
"none" option by | |
+ | | | using the DPDK Packet Framework by using
one | |
+ | | | stub table for each input NIC port.
| |
+ | | |
| |
+
+-------+------------------------+----------------------------------------------------------+-------------------------------------------------------+
+ | 3 | hash-[spec]-8-lru | LRU hash table with 8-byte key size and
16 million | 16 million entries are successfully added to the |
+ | | | entries.
| hash table with the following key format: |
+ | | |
| |
+ | | |
| [4-byte index, 4 bytes of 0] |
+ | | |
| |
+ | | |
| The action configured for all table entries is |
+ | | |
| "Sendto output port", with the output port index |
+ | | |
| uniformly distributed for the range of output ports. |
+ | | |
| |
+ | | |
| The default table rule (used in the case of a lookup |
+ | | |
| miss) is to drop the packet. |
+ | | |
| |
+ | | |
| At run time, core A is creating the following lookup |
+ | | |
| key and storing it into the packet meta data for |
+ | | |
| core B to use for table lookup: |
+ | | |
| |
+ | | |
| [destination IPv4 address, 4 bytes of 0] |
+ | | |
| |
+
+-------+------------------------+----------------------------------------------------------+-------------------------------------------------------+
+ | 4 | hash-[spec]-8-ext | Extendible bucket hash table with 8-byte
key size | Same as hash-[spec]-8-lru table entries, above. |
+ | | | and 16 million entries.
| |
+ | | |
| |
+
+-------+------------------------+----------------------------------------------------------+-------------------------------------------------------+
+ | 5 | hash-[spec]-16-lru | LRU hash table with 16-byte key size and
16 million | 16 million entries are successfully added to the hash |
+ | | | entries.
| table with the following key format: |
+ | | |
| |
+ | | |
| [4-byte index, 12 bytes of 0] |
+ | | |
| |
+ | | |
| The action configured for all table entries is |
+ | | |
| "Send to output port", with the output port index |
+ | | |
| uniformly distributed for the range of output ports. |
+ | | |
| |
+ | | |
| The default table rule (used in the case of a lookup |
+ | | |
| miss) is to drop the packet. |
+ | | |
| |
+ | | |
| At run time, core A is creating the following lookup |
+ | | |
| key and storing it into the packet meta data for core |
+ | | |
| B to use for table lookup: |
+ | | |
| |
+ | | |
| [destination IPv4 address, 12 bytes of 0] |
+ | | |
| |
+
+-------+------------------------+----------------------------------------------------------+-------------------------------------------------------+
+ | 6 | hash-[spec]-16-ext | Extendible bucket hash table with
16-byte key size | Same as hash-[spec]-16-lru table entries, above. |
+ | | | and 16 million entries.
| |
+ | | |
| |
+
+-------+------------------------+----------------------------------------------------------+-------------------------------------------------------+
+ | 7 | hash-[spec]-32-lru | LRU hash table with 32-byte key size and
16 million | 16 million entries are successfully added to the hash |
+ | | | entries.
| table with the following key format: |
+ | | |
| |
+ | | |
| [4-byte index, 28 bytes of 0]. |
+ | | |
| |
+ | | |
| The action configured for all table entries is |
+ | | |
| "Send to output port", with the output port index |
+ | | |
| uniformly distributed for the range of output ports. |
+ | | |
| |
+ | | |
| The default table rule (used in the case of a lookup |
+ | | |
| miss) is to drop the packet. |
+ | | |
| |
+ | | |
| At run time, core A is creating the following lookup |
+ | | |
| key and storing it into the packet meta data for |
+ | | |
| Lpmcore B to use for table lookup: |
+ | | |
| |
+ | | |
| [destination IPv4 address, 28 bytes of 0] |
+ | | |
| |
+
+-------+------------------------+----------------------------------------------------------+-------------------------------------------------------+
+ | 8 | hash-[spec]-32-ext | Extendible bucket hash table with
32-byte key size | Same as hash-[spec]-32-lru table entries, above. |
+ | | | and 16 million entries.
| |
+ | | |
| |
+
+-------+------------------------+----------------------------------------------------------+-------------------------------------------------------+
+ | 9 | lpm | Longest Prefix Match (LPM) IPv4 table.
| In the case of two ports, two routes |
+ | | |
| are added to the table: |
+ | | |
| |
+ | | |
| [0.0.0.0/9 => send to output port 0] |
+ | | |
| |
+ | | |
| [0.128.0.0/9 => send to output port 1] |
+ | | |
| |
+ | | |
| In case of four ports, four entries are added to the |
+ | | |
| table: |
+ | | |
| |
+ | | |
| [0.0.0.0/10 => send to output port 0] |
+ | | |
| |
+ | | |
| [0.64.0.0/10 => send to output port 1] |
+ | | |
| |
+ | | |
| [0.128.0.0/10 => send to output port 2] |
+ | | |
| |
+ | | |
| [0.192.0.0/10 => send to output port 3] |
+ | | |
| |
+ | | |
| The default table rule (used in the case of a lookup |
+ | | |
| miss) is to drop the packet. |
+ | | |
| |
+ | | |
| At run time, core A is storing the IPv4 destination |
+ | | |
| within the packet meta data to be later used by core |
+ | | |
| B as the lookup key. |
+ | | |
| |
+
+-------+------------------------+----------------------------------------------------------+-------------------------------------------------------+
+ | 10 | acl | Access Control List (ACL) table
| In the case of two ports, two ACL rules are added to |
+ | | |
| the table: |
+ | | |
| |
+ | | |
| [priority = 0 (highest), |
+ | | |
| |
+ | | |
| IPv4 source = ANY, |
+ | | |
| |
+ | | |
| IPv4 destination = 0.0.0.0/9, |
+ | | |
| |
+ | | |
| L4 protocol = ANY, |
+ | | |
| |
+ | | |
| TCP source port = ANY, |
+ | | |
| |
+ | | |
| TCP destination port = ANY |
+ | | |
| |
+ | | |
| => send to output port 0] |
+ | | |
| |
+ | | |
| |
+ | | |
| [priority = 0 (highest), |
+ | | |
| |
+ | | |
| IPv4 source = ANY, |
+ | | |
| |
+ | | |
| IPv4 destination = 0.128.0.0/9, |
+ | | |
| |
+ | | |
| L4 protocol = ANY, |
+ | | |
| |
+ | | |
| TCP source port = ANY, |
+ | | |
| |
+ | | |
| TCP destination port = ANY |
+ | | |
| |
+ | | |
| => send to output port 0]. |
+ | | |
| |
+ | | |
| |
+ | | |
| The default table rule (used in the case of a lookup |
+ | | |
| miss) is to drop the packet. |
+ | | |
| |
+
+-------+------------------------+----------------------------------------------------------+-------------------------------------------------------+
Input Traffic
~~~~~~~~~~~~~
--
1.8.1.4