fmcquillan99 edited a comment on pull request #560: URL: https://github.com/apache/madlib/pull/560#issuecomment-796321033
(1) ``` # import database connector psycopg2 and create connection cursor import psycopg2 as p2 conn = p2.connect('postgresql://gpadmin@localhost:8000/madlib') cur = conn.cursor() # import Dill and define functions import dill # custom loss def __squared_error(y_true, y_pred): import tensorflow.keras.backend as K return K.square(y_pred - y_true) pb_squared_error=dill.dumps(squared_error) # custom metric def _rmse(y_true, y_pred): import tensorflow.keras.backend as K return K.sqrt(K.mean(K.square(y_pred - y_true), axis=-1)) pb_rmse=dill.dumps(rmse) # call load function cur.execute("DROP TABLE IF EXISTS madlib.custom_function_table") cur.execute("SELECT madlib.load_custom_function('custom_function_table', %s,'__squared_error', 'squared error')", [p2.Binary(pb_squared_error)]) cur.execute("SELECT madlib.load_custom_function('custom_function_table', %s,'_rmse', 'root mean square error')", [p2.Binary(pb_rmse)]) conn.commit() ``` ``` SELECT madlib.load_top_k_accuracy_function('custom_function_table', 2); SELECT madlib.load_top_k_accuracy_function('custom_function_table', 3); SELECT madlib.load_top_k_accuracy_function('custom_function_table', 5); ``` ``` SELECT id, name, description FROM madlib.custom_function_table ORDER BY id; ``` ``` id | name | description ----+-----------------+------------------------ 1 | __squared_error | squared error 2 | _rmse | root mean square error 3 | top_2_accuracy | returns top_2_accuracy 4 | top_3_accuracy | returns top_3_accuracy 5 | top_5_accuracy | returns top_5_accuracy (5 rows) ``` ``` DROP TABLE IF EXISTS iris_model, iris_model_summary; SELECT madlib.madlib_keras_fit('iris_train_packed', -- source table 'iris_model', -- model output table 'model_arch_library', -- model arch table 1, -- model arch id $$ loss='__squared_error', optimizer='adam', metrics=['_rmse'] $$, -- compile_params $$ batch_size=5, epochs=3 $$, -- fit_params 10, -- num_iterations NULL, -- use_gpus, NULL, -- validation_table, NULL, -- metrics_compute_frequency, NULL, -- warm_start, NULL, -- name, NULL, -- description, 'custom_function_table' -- object_table ); ``` works OK ``` SELECT * FROM iris_model_summary; ``` ``` -[ RECORD 1 ]-------------+-------------------------------------------------------------- source_table | iris_train_packed model | iris_model dependent_varname | {class_text} independent_varname | {attributes} model_arch_table | model_arch_library model_id | 1 compile_params | loss='__squared_error', optimizer='adam', metrics=['_rmse'] fit_params | batch_size=5, epochs=3 num_iterations | 10 validation_table | object_table | madlib.custom_function_table metrics_compute_frequency | 10 name | description | model_type | madlib_keras model_size | 0.7900390625 start_training_time | 2021-03-11 00:35:24.12472 end_training_time | 2021-03-11 00:35:26.849639 metrics_elapsed_time | {2.724858045578} madlib_version | 1.18.0-dev num_classes | {3} dependent_vartype | {"character varying"} normalizing_const | 1 metrics_type | {_rmse} loss_type | __squared_error training_metrics_final | 0.228817746043205 training_loss_final | 0.0709948241710663 training_metrics | {0.228817746043205} training_loss | {0.0709948241710663} validation_metrics_final | validation_loss_final | validation_metrics | validation_loss | metrics_iters | {10} class_text_class_values | {Iris-setosa,Iris-versicolor,Iris-virginica} ``` (2) same `madlib.custom_function_table` as above ``` DROP TABLE IF EXISTS iris_model, iris_model_summary; SELECT madlib.madlib_keras_fit('iris_train_packed', -- source table 'iris_model', -- model output table 'model_arch_library', -- model arch table 1, -- model arch id $$ loss='categorical_crossentropy', optimizer='adam', metrics=['top_k_categorical_accuracy'] $$, -- compile_params $$ batch_size=5, epochs=3 $$, -- fit_params 10, -- num_iterations NULL, -- use_gpus, NULL, -- validation_table, NULL, -- metrics_compute_frequency, NULL, -- warm_start, NULL, -- name, NULL, -- description, NULL -- object_table ); ``` works OK ``` SELECT * FROM iris_model_summary; ``` ``` -[ RECORD 1 ]-------------+-------------------------------------------------------------------------------------------- source_table | iris_train_packed model | iris_model dependent_varname | {class_text} independent_varname | {attributes} model_arch_table | model_arch_library model_id | 1 compile_params | loss='categorical_crossentropy', optimizer='adam', metrics=['top_k_categorical_accuracy'] fit_params | batch_size=5, epochs=3 num_iterations | 10 validation_table | object_table | metrics_compute_frequency | 10 name | description | model_type | madlib_keras model_size | 0.7900390625 start_training_time | 2021-03-11 00:32:13.816587 end_training_time | 2021-03-11 00:32:16.636334 metrics_elapsed_time | {2.81966114044189} madlib_version | 1.18.0-dev num_classes | {3} dependent_vartype | {"character varying"} normalizing_const | 1 metrics_type | {top_k_categorical_accuracy} loss_type | categorical_crossentropy training_metrics_final | 1 training_loss_final | 0.347711235284805 training_metrics | {1} training_loss | {0.347711235284805} validation_metrics_final | validation_loss_final | validation_metrics | validation_loss | metrics_iters | {10} class_text_class_values | {Iris-setosa,Iris-versicolor,Iris-virginica} ``` ---------------------------------------------------------------- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. For queries about this service, please contact Infrastructure at: us...@infra.apache.org