Yes. Except it doesn't follow same parallel reordered Givens QR but uses
Cholesky QR (which we call "thin QR") as an easy-to-implement shortcut. But
this page makes no mention of QR specifics i think

On Fri, Mar 27, 2015 at 12:57 PM, Andrew Palumbo <[email protected]> wrote:

> math-scala dssvd follows the same algorithm as MR ssvd correct? Looking at
> the code against the algorithm outlined at the bottom of
> http://mahout.apache.org/users/dim-reduction/ssvd.html it seems the same,
> but I wanted to make I'm not missing anything  before I put the following
> doc up (with the algorithm taken from the MR ssvd page):
>
> # Distributed Stochastic Singular Value Decomposition
>
>
> ## Intro
>
> Mahout has a distributed implementation of Stochastic Singular Value
> Decomposition [1].
>
> ## Modified SSVD Algorithm
>
> Given an `\(m\times n\)`
> matrix `\(\mathbf{A}\)`, a target rank `\(k\in\mathbb{N}_{1}\)`
> , an oversampling parameter `\(p\in\mathbb{N}_{1}\)`,
> and the number of additional power iterations `\(q\in\mathbb{N}_{0}\)`,
> this procedure computes an `\(m\times\left(k+p\right)\)`
> SVD `\(\mathbf{A\approx U}\boldsymbol{\Sigma}\mathbf{V}^{\top}\)`:
>
>   1. Create seed for random `\(n\times\left(k+p\right)\)`
>   matrix `\(\boldsymbol{\Omega}\)`. The seed defines matrix
> `\(\mathbf{\Omega}\)`
>   using Gaussian unit vectors per one of suggestions in [Halko,
> Martinsson, Tropp].
>
>   2. `\(\mathbf{Y=A\boldsymbol{\Omega}},\,\mathbf{Y}\in\
> mathbb{R}^{m\times\left(k+p\right)}\)`
>
>   3. Column-orthonormalize `\(\mathbf{Y}\rightarrow\mathbf{Q}\)`
>   by computing thin decomposition `\(\mathbf{Y}=\mathbf{Q}\mathbf{R}\)`.
>   Also, `\(\mathbf{Q}\in\mathbb{R}^{m\times\left(k+p\right)},\,\
> mathbf{R}\in\mathbb{R}^{\left(k+p\right)\times\left(k+p\right)}\)`;
> denoted as `\(\mathbf{Q}=\mbox{qr}\left(\mathbf{Y}\right).\mathbf{Q}\)`
>
>   4. `\(\mathbf{B}_{0}=\mathbf{Q}^{\top}\mathbf{A}:\,\,\mathbf{B}
> \in\mathbb{R}^{\left(k+p\right)\times n}\)`.
>
>   5. If `\(q>0\)`
>   repeat: for `\(i=1..q\)`:
> `\(\mathbf{B}_{i}^{\top}=\mathbf{A}^{\top}\mbox{qr}\
> left(\mathbf{A}\mathbf{B}_{i-1}^{\top}\right).\mathbf{Q}\)`
>   (power iterations step).
>
>   6. Compute Eigensolution of a small Hermitian
> `\(\mathbf{B}_{q}\mathbf{B}_{q}^{\top}=\mathbf{\hat{U}}\
> boldsymbol{\Lambda}\mathbf{\hat{U}}^{\top}\)`,
> `\(\mathbf{B}_{q}\mathbf{B}_{q}^{\top}\in\mathbb{R}^{\left(
> k+p\right)\times\left(k+p\right)}\)`.
>
>   7. Singular values `\(\mathbf{\boldsymbol{\Sigma}
> }=\boldsymbol{\Lambda}^{0.5}\)`,
>   or, in other words, `\(s_{i}=\sqrt{\sigma_{i}}\)`.
>
>   8. If needed, compute `\(\mathbf{U}=\mathbf{Q}\hat{\mathbf{U}}\)`.
>
>   9. If needed, compute `\(\mathbf{V}=\mathbf{B}_{q}^{
> \top}\hat{\mathbf{U}}\boldsymbol{\Sigma}^{-1}\)`.
> Another way is `\(\mathbf{V}=\mathbf{A}^{\top}\mathbf{U}\boldsymbol{\
> Sigma}^{-1}\)`.
>
>
>
>
> ## Implementation
>
> Mahout `dssvd(...)` is implemented in the mahout `math-scala` algebraic
> optimizer which translates Mahout's R-like linear algebra operators into a
> physical plan for both Spark and H2O distributed engines.
>
>     def dssvd[K: ClassTag](drmA: DrmLike[K], k: Int, p: Int = 15, q: Int =
> 0):
>         (DrmLike[K], DrmLike[Int], Vector) = {
>
>         val drmAcp = drmA.checkpoint()
>
>         val m = drmAcp.nrow
>         val n = drmAcp.ncol
>         assert(k <= (m min n), "k cannot be greater than smaller of m, n.")
>         val pfxed = safeToNonNegInt((m min n) - k min p)
>
>         // Actual decomposition rank
>         val r = k + pfxed
>
>         // We represent Omega by its seed.
>         val omegaSeed = RandomUtils.getRandom().nextInt()
>
>         // Compute Y = A*Omega.
>         var drmY = drmAcp.mapBlock(ncol = r) {
>             case (keys, blockA) =>
>                 val blockY = blockA %*% Matrices.symmetricUniformView(n,
> r, omegaSeed)
>             keys -> blockY
>         }
>
>         var drmQ = dqrThin(drmY.checkpoint())._1
>
>         // Checkpoint Q if last iteration
>         if (q == 0) drmQ = drmQ.checkpoint()
>
>         var drmBt = drmAcp.t %*% drmQ
>
>         // Checkpoint B' if last iteration
>         if (q == 0) drmBt = drmBt.checkpoint()
>
>         for (i <- 0  until q) {
>             drmY = drmAcp %*% drmBt
>             drmQ = dqrThin(drmY.checkpoint())._1
>
>             // Checkpoint Q if last iteration
>             if (i == q - 1) drmQ = drmQ.checkpoint()
>
>             drmBt = drmAcp.t %*% drmQ
>
>             // Checkpoint B' if last iteration
>             if (i == q - 1) drmBt = drmBt.checkpoint()
>         }
>
>         val (inCoreUHat, d) = eigen(drmBt.t %*% drmBt)
>         val s = d.sqrt
>
>         // Since neither drmU nor drmV are actually computed until
> actually used
>         // we don't need the flags instructing compute (or not compute)
> either of the U,V outputs
>         val drmU = drmQ %*% inCoreUHat
>         val drmV = drmBt %*% (inCoreUHat %*%: diagv(1 /: s))
>
>         (drmU(::, 0 until k), drmV(::, 0 until k), s(0 until k))
>     }
>
> Note: As a side effect of checkpointing, U and V values are returned as
> logical operators (i.e. they are neither checkpointed nor computed).
> Therefore there is no physical work actually done to compute
> `\(\mathbf{U}\)` or `\(\mathbf{V}\)` until they are used in a subsequent
> expression.
>
>
> ## Usage
>
> The scala `dssvd(...)` method can easily be called in any Spark or H2O
> application built with the `math-scala` library and the corresponding
> `Spark` or `H2O` engine module as follows:
>
>     import org.apache.mahout.math._
>     import org.decompsitions._
>
>
>     val(drmU, drmV, s) = dssvd(drma, k = 40, q = 1)
>
>
> ## References
>
> [1]: [Mahout Scala and Mahout Spark Bindings for Linear Algebra
> Subroutines](http://mahout.apache.org/users/sparkbindings/
> ScalaSparkBindings.pdf)
>
> [2]: [Halko, Martinsson, Tropp](http://arxiv.org/abs/0909.4061)
>
> [3]: [Mahout Spark and Scala Bindings](http://mahout.apache.org/users/
> sparkbindings/home.html)
>
> [4]: [Randomized methods for computing low-rank
> approximations of matrices](http://amath.colorado.edu/faculty/martinss/
> Pubs/2012_halko_dissertation.pdf)
>
>
>
>

Reply via email to