But MR version of SSVD is more stable because of the QR differences.

On Fri, Mar 27, 2015 at 3:44 PM, Dmitriy Lyubimov <[email protected]> wrote:

> Yes. Except it doesn't follow same parallel reordered Givens QR but uses
> Cholesky QR (which we call "thin QR") as an easy-to-implement shortcut. But
> this page makes no mention of QR specifics i think
>
> On Fri, Mar 27, 2015 at 12:57 PM, Andrew Palumbo <[email protected]>
> wrote:
>
>> math-scala dssvd follows the same algorithm as MR ssvd correct? Looking
>> at the code against the algorithm outlined at the bottom of
>> http://mahout.apache.org/users/dim-reduction/ssvd.html it seems the
>> same, but I wanted to make I'm not missing anything  before I put the
>> following doc up (with the algorithm taken from the MR ssvd page):
>>
>> # Distributed Stochastic Singular Value Decomposition
>>
>>
>> ## Intro
>>
>> Mahout has a distributed implementation of Stochastic Singular Value
>> Decomposition [1].
>>
>> ## Modified SSVD Algorithm
>>
>> Given an `\(m\times n\)`
>> matrix `\(\mathbf{A}\)`, a target rank `\(k\in\mathbb{N}_{1}\)`
>> , an oversampling parameter `\(p\in\mathbb{N}_{1}\)`,
>> and the number of additional power iterations `\(q\in\mathbb{N}_{0}\)`,
>> this procedure computes an `\(m\times\left(k+p\right)\)`
>> SVD `\(\mathbf{A\approx U}\boldsymbol{\Sigma}\mathbf{V}^{\top}\)`:
>>
>>   1. Create seed for random `\(n\times\left(k+p\right)\)`
>>   matrix `\(\boldsymbol{\Omega}\)`. The seed defines matrix
>> `\(\mathbf{\Omega}\)`
>>   using Gaussian unit vectors per one of suggestions in [Halko,
>> Martinsson, Tropp].
>>
>>   2. `\(\mathbf{Y=A\boldsymbol{\Omega}},\,\mathbf{Y}\in\
>> mathbb{R}^{m\times\left(k+p\right)}\)`
>>
>>   3. Column-orthonormalize `\(\mathbf{Y}\rightarrow\mathbf{Q}\)`
>>   by computing thin decomposition `\(\mathbf{Y}=\mathbf{Q}\mathbf{R}\)`.
>>   Also, `\(\mathbf{Q}\in\mathbb{R}^{m\times\left(k+p\right)},\,\
>> mathbf{R}\in\mathbb{R}^{\left(k+p\right)\times\left(k+p\right)}\)`;
>> denoted as `\(\mathbf{Q}=\mbox{qr}\left(\mathbf{Y}\right).\mathbf{Q}\)`
>>
>>   4. `\(\mathbf{B}_{0}=\mathbf{Q}^{\top}\mathbf{A}:\,\,\mathbf{B}
>> \in\mathbb{R}^{\left(k+p\right)\times n}\)`.
>>
>>   5. If `\(q>0\)`
>>   repeat: for `\(i=1..q\)`:
>> `\(\mathbf{B}_{i}^{\top}=\mathbf{A}^{\top}\mbox{qr}\
>> left(\mathbf{A}\mathbf{B}_{i-1}^{\top}\right).\mathbf{Q}\)`
>>   (power iterations step).
>>
>>   6. Compute Eigensolution of a small Hermitian
>> `\(\mathbf{B}_{q}\mathbf{B}_{q}^{\top}=\mathbf{\hat{U}}\
>> boldsymbol{\Lambda}\mathbf{\hat{U}}^{\top}\)`,
>> `\(\mathbf{B}_{q}\mathbf{B}_{q}^{\top}\in\mathbb{R}^{\left(
>> k+p\right)\times\left(k+p\right)}\)`.
>>
>>   7. Singular values `\(\mathbf{\boldsymbol{\Sigma}
>> }=\boldsymbol{\Lambda}^{0.5}\)`,
>>   or, in other words, `\(s_{i}=\sqrt{\sigma_{i}}\)`.
>>
>>   8. If needed, compute `\(\mathbf{U}=\mathbf{Q}\hat{\mathbf{U}}\)`.
>>
>>   9. If needed, compute `\(\mathbf{V}=\mathbf{B}_{q}^{
>> \top}\hat{\mathbf{U}}\boldsymbol{\Sigma}^{-1}\)`.
>> Another way is `\(\mathbf{V}=\mathbf{A}^{\top}\mathbf{U}\boldsymbol{\
>> Sigma}^{-1}\)`.
>>
>>
>>
>>
>> ## Implementation
>>
>> Mahout `dssvd(...)` is implemented in the mahout `math-scala` algebraic
>> optimizer which translates Mahout's R-like linear algebra operators into a
>> physical plan for both Spark and H2O distributed engines.
>>
>>     def dssvd[K: ClassTag](drmA: DrmLike[K], k: Int, p: Int = 15, q: Int
>> = 0):
>>         (DrmLike[K], DrmLike[Int], Vector) = {
>>
>>         val drmAcp = drmA.checkpoint()
>>
>>         val m = drmAcp.nrow
>>         val n = drmAcp.ncol
>>         assert(k <= (m min n), "k cannot be greater than smaller of m,
>> n.")
>>         val pfxed = safeToNonNegInt((m min n) - k min p)
>>
>>         // Actual decomposition rank
>>         val r = k + pfxed
>>
>>         // We represent Omega by its seed.
>>         val omegaSeed = RandomUtils.getRandom().nextInt()
>>
>>         // Compute Y = A*Omega.
>>         var drmY = drmAcp.mapBlock(ncol = r) {
>>             case (keys, blockA) =>
>>                 val blockY = blockA %*% Matrices.symmetricUniformView(n,
>> r, omegaSeed)
>>             keys -> blockY
>>         }
>>
>>         var drmQ = dqrThin(drmY.checkpoint())._1
>>
>>         // Checkpoint Q if last iteration
>>         if (q == 0) drmQ = drmQ.checkpoint()
>>
>>         var drmBt = drmAcp.t %*% drmQ
>>
>>         // Checkpoint B' if last iteration
>>         if (q == 0) drmBt = drmBt.checkpoint()
>>
>>         for (i <- 0  until q) {
>>             drmY = drmAcp %*% drmBt
>>             drmQ = dqrThin(drmY.checkpoint())._1
>>
>>             // Checkpoint Q if last iteration
>>             if (i == q - 1) drmQ = drmQ.checkpoint()
>>
>>             drmBt = drmAcp.t %*% drmQ
>>
>>             // Checkpoint B' if last iteration
>>             if (i == q - 1) drmBt = drmBt.checkpoint()
>>         }
>>
>>         val (inCoreUHat, d) = eigen(drmBt.t %*% drmBt)
>>         val s = d.sqrt
>>
>>         // Since neither drmU nor drmV are actually computed until
>> actually used
>>         // we don't need the flags instructing compute (or not compute)
>> either of the U,V outputs
>>         val drmU = drmQ %*% inCoreUHat
>>         val drmV = drmBt %*% (inCoreUHat %*%: diagv(1 /: s))
>>
>>         (drmU(::, 0 until k), drmV(::, 0 until k), s(0 until k))
>>     }
>>
>> Note: As a side effect of checkpointing, U and V values are returned as
>> logical operators (i.e. they are neither checkpointed nor computed).
>> Therefore there is no physical work actually done to compute
>> `\(\mathbf{U}\)` or `\(\mathbf{V}\)` until they are used in a subsequent
>> expression.
>>
>>
>> ## Usage
>>
>> The scala `dssvd(...)` method can easily be called in any Spark or H2O
>> application built with the `math-scala` library and the corresponding
>> `Spark` or `H2O` engine module as follows:
>>
>>     import org.apache.mahout.math._
>>     import org.decompsitions._
>>
>>
>>     val(drmU, drmV, s) = dssvd(drma, k = 40, q = 1)
>>
>>
>> ## References
>>
>> [1]: [Mahout Scala and Mahout Spark Bindings for Linear Algebra
>> Subroutines](http://mahout.apache.org/users/sparkbindings/
>> ScalaSparkBindings.pdf)
>>
>> [2]: [Halko, Martinsson, Tropp](http://arxiv.org/abs/0909.4061)
>>
>> [3]: [Mahout Spark and Scala Bindings](http://mahout.apache.org/users/
>> sparkbindings/home.html)
>>
>> [4]: [Randomized methods for computing low-rank
>> approximations of matrices](http://amath.colorado.edu/faculty/martinss/
>> Pubs/2012_halko_dissertation.pdf)
>>
>>
>>
>>
>

Reply via email to