Hello,

this looks like output from the cross validator.

Jörn

On Sun, Mar 5, 2017 at 11:34 AM, Damiano Porta <damianopo...@gmail.com>
wrote:

> Hello,
>
> I am training a NER model with perceptron classifier (using OpenNLP 1.7.0)
>
> the output of the training is:
>
> Indexing events using cutoff of 0
>
> Computing event counts...  done. 11861603 events
> Indexing...  done.
> Collecting events... Done indexing.
> Incorporating indexed data for training...
> done.
> Number of Event Tokens: 11861603
>    Number of Outcomes: 23
>  Number of Predicates: 6623489
> Computing model parameters...
> Performing 300 iterations.
>   1:  . (11795234/11861603) 0.9944047191597966
>   2:  . (11820243/11861603) 0.9965131188423689
>   3:  . (11829329/11861603) 0.9972791198626357
>   4:  . (11834935/11861603) 0.9977517372651908
>   5:  . (11838996/11861603) 0.9980941024581584
>   6:  . (11841501/11861603) 0.9983052880795286
>   7:  . (11843704/11861603) 0.998491013398442
>   8:  . (11845304/11861603) 0.9986259024180796
>   9:  . (11846421/11861603) 0.9987200718149141
>  10:  . (11847181/11861603) 0.9987841440992419
>  20:  . (11852226/11861603) 0.9992094660392866
>  30:  . (11853947/11861603) 0.9993545560410343
>  40:  . (11854831/11861603) 0.999429082224384
>  50:  . (11855471/11861603) 0.999483037832239
> Stopping: change in training set accuracy less than 1.0E-5
> Stats: (11846242/11861603) 0.998704981105842
> ...done.
> Compressed 6623489 parameters to 554312
> 6892 outcome patterns
> Indexing events using cutoff of 0
>
> Computing event counts...  done. 6370206 events
> Indexing...  done.
> Collecting events... Done indexing.
> Incorporating indexed data for training...
> done.
> Number of Event Tokens: 6370206
>    Number of Outcomes: 23
>  Number of Predicates: 3737425
> Computing model parameters...
> Performing 300 iterations.
>   1:  . (6330365/6370206) 0.9937457281601254
>   2:  . (6345859/6370206) 0.9961779885925196
>   3:  . (6351552/6370206) 0.9970716802564941
>   4:  . (6354847/6370206) 0.9975889319748843
>   5:  . (6356872/6370206) 0.997906818084062
>   6:  . (6358350/6370206) 0.998138835698563
>   7:  . (6359611/6370206) 0.9983367884806237
>   8:  . (6360473/6370206) 0.9984721059256169
>   9:  . (6361138/6370206) 0.9985764981540628
>  10:  . (6361532/6370206) 0.9986383485871572
>  20:  . (6364161/6370206) 0.9990510510963068
>  30:  . (6365106/6370206) 0.9991993979472563
> Stopping: change in training set accuracy less than 1.0E-5
> Stats: (6360617/6370206) 0.9984947111600473
> ...done.
> Indexing events using cutoff of 0
>
> Computing event counts...  done. 6370114 events
> Indexing...  done.
> Collecting events... Done indexing.
> Incorporating indexed data for training...
> done.
> Number of Event Tokens: 6370114
>    Number of Outcomes: 23
>  Number of Predicates: 3737390
> Computing model parameters...
> Performing 300 iterations.
>   1:  . (6330266/6370114) 0.9937445389517362
>   2:  . (6345810/6370114) 0.9961846836650019
>   3:  . (6351374/6370114) 0.9970581374210885
>   4:  . (6354747/6370114) 0.9975876412886803
>   5:  . (6356872/6370114) 0.9979212302950936
>   6:  . (6358429/6370114) 0.998165652922381
>   7:  . (6359417/6370114) 0.9983207521874805
>   8:  . (6360292/6370114) 0.9984581123665919
>   9:  . (6361076/6370114) 0.9985811870870757
>  10:  . (6361693/6370114) 0.998678045636232
>  20:  . (6364109/6370114) 0.9990573167136413
>  30:  . (6365008/6370114) 0.9991984444862368
>  40:  . (6365478/6370114) 0.9992722265253023
> Stopping: change in training set accuracy less than 1.0E-5
> Stats: (6359985/6370114) 0.9984099185666065
> ...done.
> Indexing events using cutoff of 0
>
> Computing event counts...  done. 6370480 events
> Indexing...  done.
> Collecting events... Done indexing.
> Incorporating indexed data for training...
> done.
> Number of Event Tokens: 6370480
>    Number of Outcomes: 23
>  Number of Predicates: 3737798
> Computing model parameters...
> Performing 300 iterations.
>   1:  . (6330685/6370480) 0.9937532179678769
>   2:  . (6346153/6370480) 0.9961812924614786
>   3:  . (6351726/6370480) 0.9970561088018485
>   4:  . (6355089/6370480) 0.9975840125076917
>   5:  . (6357173/6370480) 0.9979111464128292
>   6:  . (6358780/6370480) 0.9981634036995642
>   7:  . (6359845/6370480) 0.9983305810551167
>   8:  . (6360827/6370480) 0.9984847295651191
>   9:  . (6361316/6370480) 0.9985614898720347
>  10:  . (6362076/6370480) 0.9986807901445417
>  20:  . (6364506/6370480) 0.9990622370684784
>  30:  . (6365415/6370480) 0.9992049264733583
> Stopping: change in training set accuracy less than 1.0E-5
> Stats: (6362594/6370480) 0.9987621026986977
> ...done.
> Indexing events using cutoff of 0
>
> Computing event counts...  done. 6370008 events
> Indexing...  done.
> Collecting events... Done indexing.
> Incorporating indexed data for training...
> done.
> Number of Event Tokens: 6370008
>    Number of Outcomes: 23
>  Number of Predicates: 3737824
> Computing model parameters...
> Performing 300 iterations.
>   1:  . (6330200/6370008) 0.9937507142848172
>   2:  . (6345643/6370008) 0.9961750440501802
>   3:  . (6351415/6370008) 0.9970811653611737
>   4:  . (6354522/6370008) 0.9975689198506501
>   5:  . (6356723/6370008) 0.9979144453193779
>   6:  . (6358164/6370008) 0.9981406616757781
>   7:  . (6359399/6370008) 0.9983345389833106
>   8:  . (6360274/6370008) 0.9984719014481614
>   9:  . (6360694/6370008) 0.9985378354312899
>  10:  . (6361531/6370008) 0.9986692324405244
> ....
> ....
> ....
>
> etc etc is that normal ? The parameters are; *0 cutoff* and *300
> iterators*.
>
> The corpus is relative small, it has 20k sentences.
>
> I do not remember an output like that using MAXENT classifier.
>
> Damiano
>

Reply via email to