Yes, open an issue for the name samples, that should be fixed.

Jörn

On Mon, Mar 6, 2017 at 2:17 PM, Damiano Porta <damianopo...@gmail.com>
wrote:

> I have to redesign it, reading the wiki you gave me i have noticed that i
> should not create two partitions (one for trainiing and one for testing).
> It avoids overfitting, so i will pass all the data!
> Thanks Jorn!
>
> P.S. Did you read my previous email about the bug in namesamples? Should i
> open an issue?
>
> 2017-03-06 13:43 GMT+01:00 Damiano Porta <damianopo...@gmail.com>:
>
> > Oh I see. Thanks!
> >
> > Basically i have 30k sentences i apply the labels with a script and then
> i
> > pass 0-15k to train the model (to build the .bin) and 15k-30k to evaluate
> > it.
> >
> > I am trying to build the model with 300 iterations again.
> >
> > 2017-03-06 13:31 GMT+01:00 Joern Kottmann <kottm...@gmail.com>:
> >
> >> You should understand how it works, have a look at this wikipedia
> article,
> >> the picture on the right side explains it quite nicely.
> >> https://en.wikipedia.org/wiki/Cross-validation_(statistics)
> >>
> >> The idea is to split the data into n partitions and then use n-1 for
> >> training and 1 for testing, this is repeated n times, so that each
> >> partition was once used for testing.
> >>
> >> It really should be three times as long in your case, maybe there is
> >> something else wrong?'
> >>
> >> Jörn
> >>
> >> On Mon, Mar 6, 2017 at 12:36 PM, Damiano Porta <damianopo...@gmail.com>
> >> wrote:
> >>
> >> > Unfortunately not, 100 iterations ~ 30 minutes 300 iterations > 2 days
> >> and
> >> > it is still running... i will block it
> >> >
> >> > i still do not understand what number should i set as *folds*. Ok i
> will
> >> > set a number > 1 but, should i have to pay more attention to this
> >> > parameter? if i set 8 or 10 does it matter anything?
> >> >
> >> >
> >> >
> >> > 2017-03-06 12:19 GMT+01:00 Joern Kottmann <kottm...@gmail.com>:
> >> >
> >> > > test.evaluate(samples, 1), here the second parameter is the number
> of
> >> > > folds, usually you use 10 or a number larger than 1.
> >> > >
> >> > > The amount of times you need for training with perceptron is linear
> to
> >> > the
> >> > > iterations, if you use 300 instead of 100 it should take three times
> >> as
> >> > > long.
> >> > >
> >> > > Jörn
> >> > >
> >> > > On Mon, Mar 6, 2017 at 11:12 AM, Damiano Porta <
> >> damianopo...@gmail.com>
> >> > > wrote:
> >> > >
> >> > > > Jorn,
> >> > > > I am training and testing the model via api. If it is not a
> training
> >> > > > problem. How is that possible that the evaluation is taking 2 days
> >> (and
> >> > > > still running) to evaluate the model? As i told you with 100
> >> > iterations i
> >> > > > can get the model and the test in ~30 minutes.
> >> > > >
> >> > > > I only have a doubt about evaluation, this is the code:
> >> > > >
> >> > > >         try (ObjectStream<NameSample> samples =
> >> > > > ObjectStreamUtils.createObjectStream(evaluation)) {
> >> > > >
> >> > > >             TrainingParameters mlParams = new
> TrainingParameters();
> >> > > >             mlParams.put(TrainingParameters.ALGORITHM_PARAM,
> >> > > > PerceptronTrainer.PERCEPTRON_VALUE);
> >> > > >             mlParams.put(TrainingParameters.ITERATIONS_PARAM,
> >> > > > Integer.toString(100));
> >> > > >             mlParams.put(TrainingParameters.CUTOFF_PARAM,
> >> > > > Integer.toString(0));
> >> > > >
> >> > > >             TokenNameFinderCrossValidator test = new
> >> > > > TokenNameFinderCrossValidator("it",
> >> > > >                 null, mlParams, null,
> >> > > > (TokenNameFinderEvaluationMonitor)null);
> >> > > >
> >> > > >             test.evaluate(samples, 1); *// <---- SECOND PARAMETER
> >> HERE*
> >> > > >
> >> > > >             FMeasure result = test.getFMeasure();
> >> > > >
> >> > > >             System.out.println(result.toString());
> >> > > >         }
> >> > > >
> >> > > > What should i put on the second parameter of test.evaluate() ?
> Each
> >> > > sample
> >> > > > (in samples variable) represents a document. There are no
> relations
> >> > with
> >> > > > other samples.
> >> > > >
> >> > > > 2017-03-06 10:56 GMT+01:00 Joern Kottmann <kottm...@gmail.com>:
> >> > > >
> >> > > > > Hello,
> >> > > > >
> >> > > > > the model is only available after the training finished, hard to
> >> > guess
> >> > > > what
> >> > > > > you are doing.
> >> > > > >
> >> > > > > Do you use the command line? Which command?
> >> > > > >
> >> > > > > Jörn
> >> > > > >
> >> > > > > On Mon, Mar 6, 2017 at 10:29 AM, Damiano Porta <
> >> > damianopo...@gmail.com
> >> > > >
> >> > > > > wrote:
> >> > > > >
> >> > > > > > Hello Jorn,
> >> > > > > > I tried with 300 iterations and it takes forever, reducing
> that
> >> > > number
> >> > > > to
> >> > > > > > 100 i can finally get the model in half an hour.
> >> > > > > >
> >> > > > > > The problem with 300 iterations is that i can see the model
> >> (.bin)
> >> > in
> >> > > > > half
> >> > > > > > an hour too but the computations are still running. So i do
> not
> >> > > really
> >> > > > > > understand what it is doing.
> >> > > > > >
> >> > > > > > Damiano
> >> > > > > >
> >> > > > > > 2017-03-06 10:19 GMT+01:00 Joern Kottmann <kottm...@gmail.com
> >:
> >> > > > > >
> >> > > > > > > Hello,
> >> > > > > > >
> >> > > > > > > this looks like output from the cross validator.
> >> > > > > > >
> >> > > > > > > Jörn
> >> > > > > > >
> >> > > > > > > On Sun, Mar 5, 2017 at 11:34 AM, Damiano Porta <
> >> > > > damianopo...@gmail.com
> >> > > > > >
> >> > > > > > > wrote:
> >> > > > > > >
> >> > > > > > > > Hello,
> >> > > > > > > >
> >> > > > > > > > I am training a NER model with perceptron classifier
> (using
> >> > > OpenNLP
> >> > > > > > > 1.7.0)
> >> > > > > > > >
> >> > > > > > > > the output of the training is:
> >> > > > > > > >
> >> > > > > > > > Indexing events using cutoff of 0
> >> > > > > > > >
> >> > > > > > > > Computing event counts...  done. 11861603 events
> >> > > > > > > > Indexing...  done.
> >> > > > > > > > Collecting events... Done indexing.
> >> > > > > > > > Incorporating indexed data for training...
> >> > > > > > > > done.
> >> > > > > > > > Number of Event Tokens: 11861603
> >> > > > > > > >    Number of Outcomes: 23
> >> > > > > > > >  Number of Predicates: 6623489
> >> > > > > > > > Computing model parameters...
> >> > > > > > > > Performing 300 iterations.
> >> > > > > > > >   1:  . (11795234/11861603) 0.9944047191597966
> >> > > > > > > >   2:  . (11820243/11861603) 0.9965131188423689
> >> > > > > > > >   3:  . (11829329/11861603) 0.9972791198626357
> >> > > > > > > >   4:  . (11834935/11861603) 0.9977517372651908
> >> > > > > > > >   5:  . (11838996/11861603) 0.9980941024581584
> >> > > > > > > >   6:  . (11841501/11861603) 0.9983052880795286
> >> > > > > > > >   7:  . (11843704/11861603) 0.998491013398442
> >> > > > > > > >   8:  . (11845304/11861603) 0.9986259024180796
> >> > > > > > > >   9:  . (11846421/11861603) 0.9987200718149141
> >> > > > > > > >  10:  . (11847181/11861603) 0.9987841440992419
> >> > > > > > > >  20:  . (11852226/11861603) 0.9992094660392866
> >> > > > > > > >  30:  . (11853947/11861603) 0.9993545560410343
> >> > > > > > > >  40:  . (11854831/11861603) 0.999429082224384
> >> > > > > > > >  50:  . (11855471/11861603) 0.999483037832239
> >> > > > > > > > Stopping: change in training set accuracy less than 1.0E-5
> >> > > > > > > > Stats: (11846242/11861603) 0.998704981105842
> >> > > > > > > > ...done.
> >> > > > > > > > Compressed 6623489 parameters to 554312
> >> > > > > > > > 6892 outcome patterns
> >> > > > > > > > Indexing events using cutoff of 0
> >> > > > > > > >
> >> > > > > > > > Computing event counts...  done. 6370206 events
> >> > > > > > > > Indexing...  done.
> >> > > > > > > > Collecting events... Done indexing.
> >> > > > > > > > Incorporating indexed data for training...
> >> > > > > > > > done.
> >> > > > > > > > Number of Event Tokens: 6370206
> >> > > > > > > >    Number of Outcomes: 23
> >> > > > > > > >  Number of Predicates: 3737425
> >> > > > > > > > Computing model parameters...
> >> > > > > > > > Performing 300 iterations.
> >> > > > > > > >   1:  . (6330365/6370206) 0.9937457281601254
> >> > > > > > > >   2:  . (6345859/6370206) 0.9961779885925196
> >> > > > > > > >   3:  . (6351552/6370206) 0.9970716802564941
> >> > > > > > > >   4:  . (6354847/6370206) 0.9975889319748843
> >> > > > > > > >   5:  . (6356872/6370206) 0.997906818084062
> >> > > > > > > >   6:  . (6358350/6370206) 0.998138835698563
> >> > > > > > > >   7:  . (6359611/6370206) 0.9983367884806237
> >> > > > > > > >   8:  . (6360473/6370206) 0.9984721059256169
> >> > > > > > > >   9:  . (6361138/6370206) 0.9985764981540628
> >> > > > > > > >  10:  . (6361532/6370206) 0.9986383485871572
> >> > > > > > > >  20:  . (6364161/6370206) 0.9990510510963068
> >> > > > > > > >  30:  . (6365106/6370206) 0.9991993979472563
> >> > > > > > > > Stopping: change in training set accuracy less than 1.0E-5
> >> > > > > > > > Stats: (6360617/6370206) 0.9984947111600473
> >> > > > > > > > ...done.
> >> > > > > > > > Indexing events using cutoff of 0
> >> > > > > > > >
> >> > > > > > > > Computing event counts...  done. 6370114 events
> >> > > > > > > > Indexing...  done.
> >> > > > > > > > Collecting events... Done indexing.
> >> > > > > > > > Incorporating indexed data for training...
> >> > > > > > > > done.
> >> > > > > > > > Number of Event Tokens: 6370114
> >> > > > > > > >    Number of Outcomes: 23
> >> > > > > > > >  Number of Predicates: 3737390
> >> > > > > > > > Computing model parameters...
> >> > > > > > > > Performing 300 iterations.
> >> > > > > > > >   1:  . (6330266/6370114) 0.9937445389517362
> >> > > > > > > >   2:  . (6345810/6370114) 0.9961846836650019
> >> > > > > > > >   3:  . (6351374/6370114) 0.9970581374210885
> >> > > > > > > >   4:  . (6354747/6370114) 0.9975876412886803
> >> > > > > > > >   5:  . (6356872/6370114) 0.9979212302950936
> >> > > > > > > >   6:  . (6358429/6370114) 0.998165652922381
> >> > > > > > > >   7:  . (6359417/6370114) 0.9983207521874805
> >> > > > > > > >   8:  . (6360292/6370114) 0.9984581123665919
> >> > > > > > > >   9:  . (6361076/6370114) 0.9985811870870757
> >> > > > > > > >  10:  . (6361693/6370114) 0.998678045636232
> >> > > > > > > >  20:  . (6364109/6370114) 0.9990573167136413
> >> > > > > > > >  30:  . (6365008/6370114) 0.9991984444862368
> >> > > > > > > >  40:  . (6365478/6370114) 0.9992722265253023
> >> > > > > > > > Stopping: change in training set accuracy less than 1.0E-5
> >> > > > > > > > Stats: (6359985/6370114) 0.9984099185666065
> >> > > > > > > > ...done.
> >> > > > > > > > Indexing events using cutoff of 0
> >> > > > > > > >
> >> > > > > > > > Computing event counts...  done. 6370480 events
> >> > > > > > > > Indexing...  done.
> >> > > > > > > > Collecting events... Done indexing.
> >> > > > > > > > Incorporating indexed data for training...
> >> > > > > > > > done.
> >> > > > > > > > Number of Event Tokens: 6370480
> >> > > > > > > >    Number of Outcomes: 23
> >> > > > > > > >  Number of Predicates: 3737798
> >> > > > > > > > Computing model parameters...
> >> > > > > > > > Performing 300 iterations.
> >> > > > > > > >   1:  . (6330685/6370480) 0.9937532179678769
> >> > > > > > > >   2:  . (6346153/6370480) 0.9961812924614786
> >> > > > > > > >   3:  . (6351726/6370480) 0.9970561088018485
> >> > > > > > > >   4:  . (6355089/6370480) 0.9975840125076917
> >> > > > > > > >   5:  . (6357173/6370480) 0.9979111464128292
> >> > > > > > > >   6:  . (6358780/6370480) 0.9981634036995642
> >> > > > > > > >   7:  . (6359845/6370480) 0.9983305810551167
> >> > > > > > > >   8:  . (6360827/6370480) 0.9984847295651191
> >> > > > > > > >   9:  . (6361316/6370480) 0.9985614898720347
> >> > > > > > > >  10:  . (6362076/6370480) 0.9986807901445417
> >> > > > > > > >  20:  . (6364506/6370480) 0.9990622370684784
> >> > > > > > > >  30:  . (6365415/6370480) 0.9992049264733583
> >> > > > > > > > Stopping: change in training set accuracy less than 1.0E-5
> >> > > > > > > > Stats: (6362594/6370480) 0.9987621026986977
> >> > > > > > > > ...done.
> >> > > > > > > > Indexing events using cutoff of 0
> >> > > > > > > >
> >> > > > > > > > Computing event counts...  done. 6370008 events
> >> > > > > > > > Indexing...  done.
> >> > > > > > > > Collecting events... Done indexing.
> >> > > > > > > > Incorporating indexed data for training...
> >> > > > > > > > done.
> >> > > > > > > > Number of Event Tokens: 6370008
> >> > > > > > > >    Number of Outcomes: 23
> >> > > > > > > >  Number of Predicates: 3737824
> >> > > > > > > > Computing model parameters...
> >> > > > > > > > Performing 300 iterations.
> >> > > > > > > >   1:  . (6330200/6370008) 0.9937507142848172
> >> > > > > > > >   2:  . (6345643/6370008) 0.9961750440501802
> >> > > > > > > >   3:  . (6351415/6370008) 0.9970811653611737
> >> > > > > > > >   4:  . (6354522/6370008) 0.9975689198506501
> >> > > > > > > >   5:  . (6356723/6370008) 0.9979144453193779
> >> > > > > > > >   6:  . (6358164/6370008) 0.9981406616757781
> >> > > > > > > >   7:  . (6359399/6370008) 0.9983345389833106
> >> > > > > > > >   8:  . (6360274/6370008) 0.9984719014481614
> >> > > > > > > >   9:  . (6360694/6370008) 0.9985378354312899
> >> > > > > > > >  10:  . (6361531/6370008) 0.9986692324405244
> >> > > > > > > > ....
> >> > > > > > > > ....
> >> > > > > > > > ....
> >> > > > > > > >
> >> > > > > > > > etc etc is that normal ? The parameters are; *0 cutoff*
> and
> >> > *300
> >> > > > > > > > iterators*.
> >> > > > > > > >
> >> > > > > > > > The corpus is relative small, it has 20k sentences.
> >> > > > > > > >
> >> > > > > > > > I do not remember an output like that using MAXENT
> >> classifier.
> >> > > > > > > >
> >> > > > > > > > Damiano
> >> > > > > > > >
> >> > > > > > >
> >> > > > > >
> >> > > > >
> >> > > >
> >> > >
> >> >
> >>
> >
> >
>

Reply via email to