[
https://issues.apache.org/jira/browse/PARQUET-2254?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17702288#comment-17702288
]
ASF GitHub Bot commented on PARQUET-2254:
-----------------------------------------
yabola commented on code in PR #1042:
URL: https://github.com/apache/parquet-mr/pull/1042#discussion_r1141355634
##########
parquet-column/src/main/java/org/apache/parquet/column/values/bloomfilter/DynamicBlockBloomFilter.java:
##########
@@ -0,0 +1,317 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements. See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership. The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing,
+ * software distributed under the License is distributed on an
+ * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+ * KIND, either express or implied. See the License for the
+ * specific language governing permissions and limitations
+ * under the License.
+ */
+
+package org.apache.parquet.column.values.bloomfilter;
+
+import static
org.apache.parquet.column.values.bloomfilter.BlockSplitBloomFilter.LOWER_BOUND_BYTES;
+import static
org.apache.parquet.column.values.bloomfilter.BlockSplitBloomFilter.UPPER_BOUND_BYTES;
+
+import java.io.IOException;
+import java.io.OutputStream;
+import java.util.Arrays;
+import java.util.Objects;
+import java.util.TreeSet;
+
+import org.slf4j.Logger;
+import org.slf4j.LoggerFactory;
+
+import org.apache.parquet.Preconditions;
+import org.apache.parquet.column.ColumnDescriptor;
+import org.apache.parquet.io.api.Binary;
+
+/**
+ * `DynamicBlockBloomFilter` contains multiple `BlockSplitBloomFilter` as
candidates and inserts values in
+ * the candidates at the same time.
+ * The purpose of this is to finally generate a bloom filter with the optimal
bit size according to the number
+ * of real data distinct values. Use the largest bloom filter as an
approximate deduplication counter, and then
+ * remove bad bloom filter candidate during data insertion.
+ */
+public class DynamicBlockBloomFilter implements BloomFilter {
+
+ private static final Logger LOG =
LoggerFactory.getLogger(DynamicBlockBloomFilter.class);
+
+ // multiple candidates, inserting data at the same time. If the
deduplication value is greater than the
+ // expected NDV of candidate, it will be removed and finally choose the
smallest candidate to write out.
+ private final TreeSet<BloomFilterCandidate> candidates = new TreeSet<>();
+
+ // the largest among candidates and used as an approximate deduplication
counter
+ private BloomFilterCandidate maxCandidate;
+
+ // the accumulator of the number of distinct values that have been inserted
so far
+ private int distinctValueCounter = 0;
+
+ // indicates that the bloom filter candidate has been written out and new
data should be no longer allowed to be inserted
+ private boolean finalized = false;
+
+ private int maximumBytes = UPPER_BOUND_BYTES;
+ private int minimumBytes = LOWER_BOUND_BYTES;
+ // the hash strategy used in this bloom filter.
+ private final HashStrategy hashStrategy;
+ // the column to build bloom filter
+ private ColumnDescriptor column;
+
+ public DynamicBlockBloomFilter(int numBytes, int candidatesNum, double fpp,
ColumnDescriptor column) {
+ this(numBytes, LOWER_BOUND_BYTES, UPPER_BOUND_BYTES, HashStrategy.XXH64,
fpp, candidatesNum, column);
+ }
+
+ public DynamicBlockBloomFilter(int numBytes, int maximumBytes, int
candidatesNum, double fpp, ColumnDescriptor column) {
+ this(numBytes, LOWER_BOUND_BYTES, maximumBytes, HashStrategy.XXH64, fpp,
candidatesNum, column);
+ }
+
+ public DynamicBlockBloomFilter(int numBytes, int minimumBytes, int
maximumBytes, HashStrategy hashStrategy,
+ double fpp, int candidatesNum, ColumnDescriptor column) {
+ if (minimumBytes > maximumBytes) {
+ throw new IllegalArgumentException("the minimum bytes should be less or
equal than maximum bytes");
+ }
+
+ if (minimumBytes > LOWER_BOUND_BYTES && minimumBytes < UPPER_BOUND_BYTES) {
+ this.minimumBytes = minimumBytes;
+ }
+
+ if (maximumBytes > LOWER_BOUND_BYTES && maximumBytes < UPPER_BOUND_BYTES) {
+ this.maximumBytes = maximumBytes;
+ }
+ this.column = column;
+ switch (hashStrategy) {
+ case XXH64:
+ this.hashStrategy = hashStrategy;
+ break;
+ default:
+ throw new RuntimeException("Unsupported hash strategy");
+ }
+ initCandidates(numBytes, candidatesNum, fpp);
+ }
+
+ /**
+ * Given the maximum acceptable bytes size of bloom filter, generate
candidates according
+ * to the max expected distinct values. The size of the candidate bytes
needs to be a
+ * square number of 2. Therefore, set the candidate size according to
`maxBytes` of `1/2`, `1/4`, `1/8`, etc.
+ *
+ * @param maxBytes the maximum acceptable bit size
+ * @param candidatesNum the number of candidates
+ * @param fpp the false positive probability
+ */
+ private void initCandidates(int maxBytes, int candidatesNum, double fpp) {
Review Comment:
`https://github.com/apache/parquet-mr/blob/1235003e742e6a76bf6cb8f7ed33e942fa12d0d5/parquet-column/src/main/java/org/apache/parquet/column/values/bloomfilter/BlockSplitBloomFilter.java#L197-L219`
> Build a BloomFilter with a more precise size
> --------------------------------------------
>
> Key: PARQUET-2254
> URL: https://issues.apache.org/jira/browse/PARQUET-2254
> Project: Parquet
> Issue Type: Improvement
> Reporter: Mars
> Assignee: Mars
> Priority: Major
>
> Now the usage is to specify the size, and then build BloomFilter. In general
> scenarios, it is actually not sure how much the distinct value is.
> If BloomFilter can be automatically generated according to the data, the file
> size can be reduced and the reading efficiency can also be improved.
> I have an idea that the user can specify a maximum BloomFilter filter size,
> then we build multiple BloomFilter at the same time, we can use the largest
> BloomFilter as a counting tool( If there is no hit when inserting a value,
> the counter will be +1, of course this may be imprecise but enough)
> Then at the end of the write, choose a BloomFilter of a more appropriate size
> when the file is finally written.
> I want to implement this feature and hope to get your opinions, thank you
--
This message was sent by Atlassian Jira
(v8.20.10#820010)