This doesn't help for every dependency, but Spark provides an option to build the assembly jar without Hadoop and its dependencies. We make use of this in CDH packaging.
-Sandy On Tue, Sep 2, 2014 at 2:12 AM, scwf <[email protected]> wrote: > Hi sean owen, > here are some problems when i used assembly jar > 1 i put spark-assembly-*.jar to the lib directory of my application, it > throw compile error > > Error:scalac: Error: class scala.reflect.BeanInfo not found. > scala.tools.nsc.MissingRequirementError: class scala.reflect.BeanInfo not > found. > > at scala.tools.nsc.symtab.Definitions$definitions$. > getModuleOrClass(Definitions.scala:655) > > at scala.tools.nsc.symtab.Definitions$definitions$. > getClass(Definitions.scala:608) > > at scala.tools.nsc.backend.jvm.GenJVM$BytecodeGenerator.< > init>(GenJVM.scala:127) > > at scala.tools.nsc.backend.jvm.GenJVM$JvmPhase.run(GenJVM. > scala:85) > > at scala.tools.nsc.Global$Run.compileSources(Global.scala:953) > > at scala.tools.nsc.Global$Run.compile(Global.scala:1041) > > at xsbt.CachedCompiler0.run(CompilerInterface.scala:126) > > at xsbt.CachedCompiler0.liftedTree1$1(CompilerInterface.scala:102) > > at xsbt.CachedCompiler0.run(CompilerInterface.scala:102) > > at xsbt.CompilerInterface.run(CompilerInterface.scala:27) > > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > > at sun.reflect.NativeMethodAccessorImpl.invoke( > NativeMethodAccessorImpl.java:39) > > at sun.reflect.DelegatingMethodAccessorImpl.invoke( > DelegatingMethodAccessorImpl.java:25) > > at java.lang.reflect.Method.invoke(Method.java:597) > > at sbt.compiler.AnalyzingCompiler.call( > AnalyzingCompiler.scala:102) > > at sbt.compiler.AnalyzingCompiler.compile( > AnalyzingCompiler.scala:48) > > at sbt.compiler.AnalyzingCompiler.compile( > AnalyzingCompiler.scala:41) > > at org.jetbrains.jps.incremental.scala.local. > IdeaIncrementalCompiler.compile(IdeaIncrementalCompiler.scala:28) > > at org.jetbrains.jps.incremental.scala.local.LocalServer. > compile(LocalServer.scala:25) > > at org.jetbrains.jps.incremental.scala.remote.Main$.make(Main. > scala:58) > > at org.jetbrains.jps.incremental.scala.remote.Main$.nailMain( > Main.scala:21) > > at org.jetbrains.jps.incremental.scala.remote.Main.nailMain( > Main.scala) > > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > > at sun.reflect.NativeMethodAccessorImpl.invoke( > NativeMethodAccessorImpl.java:39) > > at sun.reflect.DelegatingMethodAccessorImpl.invoke( > DelegatingMethodAccessorImpl.java:25) > > at java.lang.reflect.Method.invoke(Method.java:597) > > at com.martiansoftware.nailgun.NGSession.run(NGSession.java:319) > 2 i test my branch which updated hive version to org.apache.hive 0.13.1 > it run successfully when use a bag of 3rd jars as dependency but throw > error using assembly jar, it seems assembly jar lead to conflict > ERROR DDLTask: java.lang.NoSuchFieldError: doubleTypeInfo > at org.apache.hadoop.hive.ql.io.parquet.serde. > ArrayWritableObjectInspector.getObjectInspector( > ArrayWritableObjectInspector.java:66) > at org.apache.hadoop.hive.ql.io.parquet.serde. > ArrayWritableObjectInspector.<init>(ArrayWritableObjectInspector.java:59) > at org.apache.hadoop.hive.ql.io.parquet.serde. > ParquetHiveSerDe.initialize(ParquetHiveSerDe.java:113) > at org.apache.hadoop.hive.metastore.MetaStoreUtils. > getDeserializer(MetaStoreUtils.java:339) > at org.apache.hadoop.hive.ql.metadata.Table. > getDeserializerFromMetaStore(Table.java:283) > at org.apache.hadoop.hive.ql.metadata.Table.checkValidity( > Table.java:189) > at org.apache.hadoop.hive.ql.metadata.Hive.createTable( > Hive.java:597) > at org.apache.hadoop.hive.ql.exec.DDLTask.createTable( > DDLTask.java:4194) > at org.apache.hadoop.hive.ql.exec.DDLTask.execute(DDLTask. > java:281) > at org.apache.hadoop.hive.ql.exec.Task.executeTask(Task.java:153) > at org.apache.hadoop.hive.ql.exec.TaskRunner.runSequential( > TaskRunner.java:85) > > > > > > On 2014/9/2 16:45, Sean Owen wrote: > >> Hm, are you suggesting that the Spark distribution be a bag of 100 >> JARs? It doesn't quite seem reasonable. It does not remove version >> conflicts, just pushes them to run-time, which isn't good. The >> assembly is also necessary because that's where shading happens. In >> development, you want to run against exactly what will be used in a >> real Spark distro. >> >> On Tue, Sep 2, 2014 at 9:39 AM, scwf <[email protected]> wrote: >> >>> hi, all >>> I suggest spark not use assembly jar as default run-time >>> dependency(spark-submit/spark-class depend on assembly jar),use a >>> library of >>> all 3rd dependency jar like hadoop/hive/hbase more reasonable. >>> >>> 1 assembly jar packaged all 3rd jars into a big one, so we need >>> rebuild >>> this jar if we want to update the version of some component(such as >>> hadoop) >>> 2 in our practice with spark, sometimes we meet jar compatibility >>> issue, >>> it is hard to diagnose compatibility issue with assembly jar >>> >>> >>> >>> >>> >>> >>> >>> --------------------------------------------------------------------- >>> To unsubscribe, e-mail: [email protected] >>> For additional commands, e-mail: [email protected] >>> >>> >> >> > > > --------------------------------------------------------------------- > To unsubscribe, e-mail: [email protected] > For additional commands, e-mail: [email protected] > >
