Hello,

I am currently working on gl3n - https://bitbucket.org/dav1d/gl3n - gl3n provides all the math you need to work with OpenGL, DirectX or just vectors and matrices (it's mainly targeted at graphics - gl3n will never be more then a pure math library). What it supports:

 * vectors
 * matrices
 * quaternions
 * interpolation (lerp, slerp, hermite, catmull rom, nearest)
 * nearly all glsl functions (according to spec 4.1)
 * some more cool features, like templated types (vectors, matrices,
   quats), cool ctors, dynamic swizzling

And the best is, it's MIT licensed ;). Unfortunatly there's no documentation yet, but it shouldn't be hard to understand how to use it, if you run anytime into troubles just take a look into the source, I did add to every part of the lib unittests, so you can see how it works when looking at the unittests, furthermore I am very often at #D on freenode. But gl3n isn't finished! My current plans are to add more interpolation functions and the rest of the glsl defined functions, but I am new to graphics programming (about 4 months I am now into OpenGL), so tell me what you're missing, the chances are good that I'll implement and add it. So let me know what you think about it.

Before I forget it, a bit of code to show you how to use gl3n:

------------------------------------------------------------------------
vec4 v4 = vec4(1.0f, vec3(2.0f, 3.0f, 4.0f));
vec4 v4 = vec4(1.0f, vec4(1.0f, 2.0f, 3.0f, 4.0f).xyz)); // "dynamic" swizzling with opDispatch
vec3 v3 = my_3dvec.rgb;
float[] foo = v4.xyzzzwzyyxw // not useful but possible!
glUniformMatrix4fv(location, 1, GL_TRUE, mat4.translation(-0.5f, -0.54f, 0.42f).rotatex(PI).rotatez(PI/2).value_ptr); // yes they are row major!
mat3 inv_view = view.rotation;
mat3 inv_view = mat3(view);
mat4 m4 = mat4(vec4(1.0f, 2.0f, 3.0f, 4.0f), 5.0f, 6.0f, 7.0f, 8.0f, vec4(...) ...);

struct Camera {
    vec3 position = vec3(0.0f, 0.0f, 0.0f);
    quat orientation = quat.identity;

    Camera rotatex(real alpha) { orientation.rotatex(alpha); return this; }
    Camera rotatey(real alpha) { orientation.rotatey(alpha); return this; }
    Camera rotatez(real alpha) { orientation.rotatez(alpha); return this; }

    Camera move(float x, float y, float z) {
        position += vec3(x, y, z);
        return this;
    }
    Camera move(vec3 s) {
        position += s;
        return this;
    }

    @property camera() {
//writefln("yaw: %s, pitch: %s, roll: %s", degrees(orientation.yaw), degrees(orientation.pitch), degrees(orientation.roll)); return mat4.translation(position.x, position.y, position.z) * orientation.to_matrix!(4,4);
    }
}

glUniformMatrix4fv(programs.main.view, 1, GL_TRUE, cam.camera.value_ptr); glUniformMatrix3fv(programs.main.inv_rot, 1, GL_TRUE, cam.orientation.to_matrix!(3,3).inverse.value_ptr);
------------------------------------------------------------------------

I hope this gave you a little introduction of gl3n.

- dav1d

Reply via email to