Hi Prabhakar, Fabrizio, On Mon, 12 May 2025 at 20:43, Prabhakar <prabhakar.cse...@gmail.com> wrote: > From: Lad Prabhakar <prabhakar.mahadev-lad...@bp.renesas.com> > > Add support for PLLDSI and PLLDSI divider clocks. > > Introduce the `renesas-rzv2h-dsi.h` header to centralize and share > PLLDSI-related data structures, limits, and algorithms between the RZ/V2H > CPG and DSI drivers. > > The DSI PLL is functionally similar to the CPG's PLLDSI, but has slightly > different parameter limits and omits the programmable divider present in > CPG. To ensure precise frequency calculations-especially for milliHz-level > accuracy needed by the DSI driver-the shared algorithm allows both drivers > to compute PLL parameters consistently using the same logic and input > clock. > > Co-developed-by: Fabrizio Castro <fabrizio.castro...@renesas.com> > Signed-off-by: Fabrizio Castro <fabrizio.castro...@renesas.com> > Signed-off-by: Lad Prabhakar <prabhakar.mahadev-lad...@bp.renesas.com>
Thanks for your patch! > --- a/drivers/clk/renesas/rzv2h-cpg.c > +++ b/drivers/clk/renesas/rzv2h-cpg.c > @@ -48,6 +53,7 @@ > #define CPG_PLL_STBY(x) ((x)) > #define CPG_PLL_STBY_RESETB BIT(0) > #define CPG_PLL_STBY_RESETB_WEN BIT(16) > +#define CPG_PLL_STBY_SSCGEN_WEN BIT(18) CPG_PLL_STBY_SSC_EN_WEN? > #define CPG_PLL_CLK1(x) ((x) + 0x004) > #define CPG_PLL_CLK1_KDIV(x) ((s16)FIELD_GET(GENMASK(31, 16), (x))) You are already using FIELD_GET() for extracting the K, M, P, and S fields, but are still still open-coding shifts for writing in rzv2h_cpg_pll_set_rate(). What about replacing CPG_PLL_CLK1_KDIV() by: #define CPG_PLL_CLK1_DIV_K GENMASK(31,16) Then the code can use: (s16)FIELD_GET(CPG_PLL_CLK1_DIV_K, clk1) for reading and: FIELD_PREP(CPG_PLL_CLK1_DIV_K, (u16)k) | ... for writing? Same for the M, P, and S fields (but without the s16/u16 casts, as they are unsigned, unlike K). > #define CPG_PLL_CLK1_MDIV(x) FIELD_GET(GENMASK(15, 6), (x)) > @@ -198,6 +227,188 @@ static int rzv2h_cpg_pll_clk_enable(struct clk_hw *hw) > return ret; > } > > +static unsigned long rzv2h_cpg_plldsi_div_recalc_rate(struct clk_hw *hw, > + unsigned long > parent_rate) > +{ > + struct rzv2h_plldsi_div_clk *dsi_div = to_plldsi_div_clk(hw); > + struct rzv2h_cpg_priv *priv = dsi_div->priv; > + struct ddiv ddiv = dsi_div->ddiv; > + u32 div; > + > + div = readl(priv->base + ddiv.offset); > + div >>= ddiv.shift; > + div &= clk_div_mask(ddiv.width); > + div = dsi_div->dtable[div].div; > + > + return DIV_ROUND_CLOSEST_ULL(parent_rate, div); > +} > + > +static int rzv2h_cpg_plldsi_div_determine_rate(struct clk_hw *hw, > + struct clk_rate_request *req) > +{ > + struct rzv2h_plldsi_div_clk *dsi_div = to_plldsi_div_clk(hw); > + struct rzv2h_cpg_priv *priv = dsi_div->priv; > + struct rzv2h_plldsi_parameters *dsi_dividers = > &priv->plldsi_div_parameters; > + u64 rate_millihz; > + > + /* > + * Adjust the requested clock rate (`req->rate`) to ensure it falls > within > + * the supported range of 5.44 MHz to 187.5 MHz. > + */ > + req->rate = clamp(req->rate, 5440000UL, 187500000UL); > + > + rate_millihz = mul_u32_u32(req->rate, MILLI); > + if (rate_millihz == dsi_dividers->error_millihz + > dsi_dividers->freq_millihz) > + goto exit_determine_rate; > + > + if (!rzv2h_dsi_get_pll_parameters_values(priv->dsi_limits, > + dsi_dividers, rate_millihz)) > { > + dev_err(priv->dev, > + "failed to determine rate for req->rate: %lu\n", > + req->rate); > + return -EINVAL; > + } > + > +exit_determine_rate: > + req->best_parent_rate = req->rate * dsi_dividers->csdiv; Shouldn't this also update req->rate with the actual rate? req->rate = DIV_ROUND_CLOSEST_ULL(dsi_dividers->freq_millihz, MILLI); Would it help the DSI driver if this clock would provide a .recalc_accuracy() callback that takes into account the difference between req->rate and dsi_dividers->freq_millihz? Or would that be considered abuse of the accuracy concept? > + > + return 0; > +}; > + > +static int rzv2h_cpg_plldsi_div_set_rate(struct clk_hw *hw, > + unsigned long rate, > + unsigned long parent_rate) > +{ > + struct rzv2h_plldsi_div_clk *dsi_div = to_plldsi_div_clk(hw); > + struct rzv2h_cpg_priv *priv = dsi_div->priv; > + struct rzv2h_plldsi_parameters *dsi_dividers = > &priv->plldsi_div_parameters; > + struct ddiv ddiv = dsi_div->ddiv; > + const struct clk_div_table *clkt; > + bool div_found = false; > + u32 val, shift, div; > + > + div = dsi_dividers->csdiv; > + for (clkt = dsi_div->dtable; clkt->div; clkt++) { > + if (clkt->div == div) { > + div_found = true; > + break; > + } > + } > + > + if (!div_found) > + return -EINVAL; > + > + shift = ddiv.shift; > + val = readl(priv->base + ddiv.offset) | DDIV_DIVCTL_WEN(shift); > + val &= ~(clk_div_mask(ddiv.width) << shift); > + val |= (u32)clkt->val << shift; No need for the cast. > + writel(val, priv->base + ddiv.offset); > + > + return 0; > +}; > + > +static const struct clk_ops rzv2h_cpg_plldsi_div_ops = { > + .recalc_rate = rzv2h_cpg_plldsi_div_recalc_rate, > + .determine_rate = rzv2h_cpg_plldsi_div_determine_rate, > + .set_rate = rzv2h_cpg_plldsi_div_set_rate, > +}; > +static long rzv2h_cpg_plldsi_round_rate(struct clk_hw *hw, > + unsigned long rate, > + unsigned long *parent_rate) > +{ > + return clamp(rate, 25000000UL, 375000000UL); This only brings the desired rate into the supported range, but does not round it to the nearest rate that is actually supported. > +} > + > +static int rzv2h_cpg_pll_set_rate(struct clk_hw *hw, > + unsigned long rate, > + unsigned long parent_rate) > +{ > + struct pll_clk *pll_clk = to_pll(hw); > + struct rzv2h_cpg_priv *priv = pll_clk->priv; > + struct rzv2h_plldsi_parameters *dsi_dividers; > + struct pll pll = pll_clk->pll; > + u16 offset = pll.offset; > + u32 val; > + int ret; > + > + /* Put PLL into standby mode */ > + writel(CPG_PLL_STBY_RESETB_WEN, priv->base + CPG_PLL_STBY(offset)); > + ret = readl_poll_timeout_atomic(priv->base + CPG_PLL_MON(offset), > + val, !(val & CPG_PLL_MON_LOCK), > + 100, 2000); > + if (ret) { > + dev_err(priv->dev, "Failed to put PLLDSI into standby mode"); > + return ret; > + } > + > + dsi_dividers = &priv->plldsi_div_parameters; > + /* Output clock setting 1 */ > + writel((dsi_dividers->k << 16) | (dsi_dividers->m << 6) | > (dsi_dividers->p), This is where you want to use FIELD_PREP(). > + priv->base + CPG_PLL_CLK1(offset)); > + > + /* Output clock setting 2 */ > + val = readl(priv->base + CPG_PLL_CLK2(offset)); > + writel((val & ~GENMASK(2, 0)) | dsi_dividers->s, (val & ~CPG_PLL_CLK2_DIV_S) | FIELD_PREP(...) > + priv->base + CPG_PLL_CLK2(offset)); > + > + /* Put PLL to normal mode */ > + writel(CPG_PLL_STBY_RESETB_WEN | CPG_PLL_STBY_RESETB, > + priv->base + CPG_PLL_STBY(offset)); > + > + /* PLL normal mode transition, output clock stability check */ > + ret = readl_poll_timeout_atomic(priv->base + CPG_PLL_MON(offset), > + val, (val & CPG_PLL_MON_LOCK), > + 100, 2000); > + if (ret) { > + dev_err(priv->dev, "Failed to put PLLDSI into normal mode"); > + return ret; > + } > + > + return 0; > +}; > + > static unsigned long rzv2h_cpg_pll_clk_recalc_rate(struct clk_hw *hw, > unsigned long parent_rate) > { > --- a/drivers/clk/renesas/rzv2h-cpg.h > +++ b/drivers/clk/renesas/rzv2h-cpg.h > @@ -100,6 +100,7 @@ struct smuxed { > #define CPG_CDDIV3 (0x40C) > #define CPG_CDDIV4 (0x410) > #define CPG_CSDIV0 (0x500) > +#define CPG_CSDIV1 (0x504) Unused until [PATCH v5 2/4], so please move it there. > > #define CDDIV0_DIVCTL1 DDIV_PACK(CPG_CDDIV0, 4, 3, 1) > #define CDDIV0_DIVCTL2 DDIV_PACK(CPG_CDDIV0, 8, 3, 2) > --- /dev/null > +++ b/include/linux/clk/renesas-rzv2h-dsi.h > @@ -0,0 +1,211 @@ > +/* SPDX-License-Identifier: GPL-2.0 */ > +/* > + * Renesas RZ/V2H(P) DSI CPG helper > + * > + * Copyright (C) 2025 Renesas Electronics Corp. > + */ > +#ifndef __RENESAS_RZV2H_DSI_H__ > +#define __RENESAS_RZV2H_DSI_H__ > + > +#include <linux/limits.h> > +#include <linux/math.h> > +#include <linux/math64.h> > +#include <linux/units.h> > + > +#define OSC_CLK_IN_MEGA (24 * MEGA) > + > +struct rzv2h_pll_div_limits { > + struct { > + u32 min; > + u32 max; > + } fvco; > + > + struct { > + u16 min; > + u16 max; > + } m; > + > + struct { > + u8 min; > + u8 max; > + } p; > + > + struct { > + u8 min; > + u8 max; > + } s; > + > + struct { > + s16 min; > + s16 max; > + } k; > + > + struct { > + u8 min; > + u8 max; > + } csdiv; > +}; > + > +struct rzv2h_plldsi_parameters { > + u64 freq_millihz; > + s64 error_millihz; > + u16 m; > + s16 k; > + u8 csdiv; > + u8 p; > + u8 s; > +}; > + > +#define RZV2H_CPG_PLL_DSI_LIMITS(name) \ > + static const struct rzv2h_pll_div_limits (name) = { \ > + .fvco = { .min = 1600 * MEGA, .max = 3200 * MEGA }, \ > + .m = { .min = 64, .max = 533 }, \ > + .p = { .min = 1, .max = 4 }, \ > + .s = { .min = 0, .max = 6 }, \ > + .k = { .min = -32768, .max = 32767 }, \ > + .csdiv = { .min = 2, .max = 32 }, \ > + } \ > + > +/** > + * rzv2h_dsi_get_pll_parameters_values - Finds the best combination of PLL > parameters > + * and divider value for a given frequency. > + * > + * @limits: Pointer to the structure containing the limits for the PLL > parameters and > + * divider values > + * @pars: Pointer to the structure where the best calculated PLL parameters > and divider > + * values will be stored > + * @freq_millihz: Target output frequency in millihertz > + * > + * This function calculates the best set of PLL parameters (M, K, P, S) and > divider > + * value (CSDIV) to achieve the desired frequency. > + * There is no direct formula to calculate the PLL parameters and the > divider value, > + * as it's an open system of equations, therefore this function uses an > iterative > + * approach to determine the best solution. The best solution is one that > minimizes > + * the error (desired frequency - actual frequency). > + * > + * Return: true if a valid set of divider values is found, false otherwise. > + */ > +static __maybe_unused bool > +rzv2h_dsi_get_pll_parameters_values(const struct rzv2h_pll_div_limits > *limits, > + struct rzv2h_plldsi_parameters *pars, > + u64 freq_millihz) > +{ > + struct rzv2h_plldsi_parameters p, best; > + > + /* Initialize best error to maximum possible value */ > + best.error_millihz = S64_MAX; > + > + for (p.csdiv = limits->csdiv.min; p.csdiv <= limits->csdiv.max; > p.csdiv += 2) { > + for (p.p = limits->p.min; p.p <= limits->p.max; p.p++) { > + u32 fref = OSC_CLK_IN_MEGA / p.p; > + > + for (p.s = limits->s.min; p.s <= limits->s.max; > p.s++) { > + u16 two_pow_s = 1 << p.s; > + u16 divider = two_pow_s * p.csdiv; No need for two_pow_s. You can initialize divider = p.csdiv << s.min at the start of the loop, and multiply by two after each iteration. > + > + for (p.m = limits->m.min; p.m <= > limits->m.max; p.m++) { > + u64 output_m, output_k_range; > + s64 pll_k, output_k; > + u64 fvco, output; > + > + /* > + * The frequency generated by the > combination of the > + * PLL + divider is calculated as > follows: > + * > + * Freq = Ffout / csdiv > + * > + * With: > + * Ffout = Ffvco / 2^(pll_s) > + * Ffvco = (pll_m + (pll_k / 65536)) > * Ffref > + * Ffref = 24MHz / pll_p > + * > + * Freq can also be rewritten as: > + * Freq = Ffvco / (2^(pll_s) * csdiv)) > + * = Ffvco / divider > + * = (pll_m * Ffref) / divider + > ((pll_k / 65536) * Ffref) / divider > + * = output_m + output_k > + * > + * Every parameter has been > determined at this point, but pll_k. > + * Considering that: > + * -32768 <= pll_k <= 32767 > + * Then: > + * -0.5 <= (pll_k / 65536) < 0.5 > + * Therefore: > + * -Ffref / (2 * divider) <= output_k > < Ffref / (2 * divider) > + */ > + > + /* Compute output M component (in > mHz) */ > + output_m = DIV_ROUND_CLOSEST_ULL(p.m > * fref * 1000ULL, "p.m * fref" may overflow => mul_u32_u32(p.m, fref) * MILLI; > + > divider); > + /* Compute range for output K (in > mHz) */ > + output_k_range = > DIV_ROUND_CLOSEST_ULL(fref * 1000ULL, mul_u32_u32(fref, MILLI) > + > divider * 2); > + /* > + * No point in continuing if we can't > achieve the > + * desired frequency > + */ > + if (freq_millihz < (output_m - > output_k_range) || > + freq_millihz >= (output_m + > output_k_range)) > + continue; > + > + /* > + * Compute the K component > + * > + * Since: > + * Freq = output_m + output_k > + * Then: > + * output_k = Freq - output_m > + * = ((pll_k / 65536) * > Ffref) / divider > + * Therefore: > + * pll_k = (output_k * 65536 * > divider) / Ffref > + */ > + output_k = freq_millihz - output_m; > + pll_k = div64_s64(output_k * 65536ULL > * divider, fref); div_s64(), as fref is 32-bit. > + pll_k = DIV_S64_ROUND_CLOSEST(pll_k, > 1000); MILLI > + > + /* Validate K value within allowed > limits */ > + if (pll_k < limits->k.min || pll_k > > limits->k.max) > + continue; > + > + p.k = pll_k; > + > + /* Compute (Ffvco * 65536) */ > + fvco = ((p.m * 65536ULL) + p.k) * > fref; mul_u32(p.m * 65536 + p.k, fref) I guess the compiler is sufficiently smart to turn that into a shift. The alternative would be to use a cast (I try to avoid them) and a shift: mul_u32((u64)p.m << 16 + p.k, fref) > + if ((fvco < (limits->fvco.min * > 65536ULL)) || > + (fvco > (limits->fvco.max * > 65536ULL))) mul_u32_u32(..., 65536) for both > + continue; > + > + /* PLL_M component of (output * 65536 > * PLL_P) */ > + output = p.m * 65536ULL * > OSC_CLK_IN_MEGA; mul_u32(p.m * 65536, OSC_CLK_IN_MEGA) > + /* PLL_K component of (output * 65536 > * PLL_P) */ > + output += p.k * OSC_CLK_IN_MEGA; > + /* Make it in mHz */ > + output *= 1000ULL; No need for the ULL => MILLI > + output /= 65536ULL * p.p * divider; mul_u32() No rounding for the division? > + > + p.error_millihz = freq_millihz - > output; > + p.freq_millihz = output; > + > + /* If an exact match is found, return > immediately */ > + if (p.error_millihz == 0) { > + *pars = p; > + return true; > + } > + > + /* Update best match if error is > smaller */ > + if (abs(best.error_millihz) > > abs(p.error_millihz)) > + best = p; > + } > + } > + } > + } > + > + /* If no valid parameters were found, return false */ > + if (best.error_millihz == S64_MAX) > + return false; > + > + *pars = best; > + return true; > +} > + > +#endif /* __RENESAS_RZV2H_DSI_H__ */ Gr{oetje,eeting}s, Geert -- Geert Uytterhoeven -- There's lots of Linux beyond ia32 -- ge...@linux-m68k.org In personal conversations with technical people, I call myself a hacker. But when I'm talking to journalists I just say "programmer" or something like that. -- Linus Torvalds