On 4/23/2012 12:05 PM, Kristofer Munsterhjelm wrote:
On 04/22/2012 05:07 PM, Richard Fobes wrote:

The core of the system is VoteFair popularity ranking, which is
mathematically equivalent to the Condorcet-Kemeny method, which is
one of the methods supported by the "Declaration of Election-Method
Reform Advocates."

You said there are ballot sets for which the Kemeny method and VoteFair
provides different winners. How, then, can VoteFair be /mathematically/
equivalent? You say the differences don't matter in practice, but for
the method to be mathematically equivalent, wouldn't the mapping have to
be completely identical?

First of all, in the context of a publication that is read by non-mathematicians (which is what the Democracy Chronicles is) the word "equivalent" does not refer to a rigorous "sameness."

Second, both methods identify the same winner, regardless of the number of candidates, if the Smith set is not larger than 6. This "qualification" (of the Smith set not exceeding 6) is true of every election ever held in the United States even in municipalities that use non-plurality methods, and is likely to be true of every election ever held in any country using any voting method. (If you really want to take it one step farther, it would be difficult for a small town of voters to produce a Smith set larger than 6 even if they tried!) The mathematical possibility of a larger-than-six Smith set is well beyond what the readers of the article care about.

Third, the reinforcement issue -- which has no effect on which candidate wins (if the Smith set does not exceed 6) and which no other Condorcet method can even achieve -- is the area in which it can be said that VoteFair ranking calculations can differ (but would rarely differ) from the results of using the Condorcet-Kemeny method, but that difference is too subtle to bring up in an article about basic voting concepts (vote splitting, strategic voting, etc.).

Fourth, to repeat an important point for Adrian's sake, the cases in which it is possible for the two methods to differ involve highly convoluted (muddled) voter preferences that have no clear preference pattern. To clarify this concept with an analogy, if the purpose of a voting method were to identify the highest mountain peak, then situations in which it is possible for the Condorcet-Kemeny method and VoteFair ranking to identify a different winner amount to attempting to find the highest sand dune in a desert -- which means that if the two methods identify different sand dunes as the highest, the difference is not significant.

Of course here in this forum we will continue to discuss the circumstances that can cause a difference between the Condorcet-Kemeny method and VoteFair popularity ranking, but from the perspective of real-life elections in which the goal is to identify which candidate wins, the two methods are "mathematically equivalent."

Richard Fobes

----
Election-Methods mailing list - see http://electorama.com/em for list info

Reply via email to