Dear all, Let G be any finite group, let $\mu G$ be the minimal faithful permutation representation degree of G, all research papers I got trying to investigate whether the inequality $\mu G\times \mu H \leq \mu G +\mu H$ is strict or equality, where H is any other group, I did the following and wish somebody explain;
gap> a:=AlternatingGroup(5);: gap> IsPerfectGroup(a); true gap> s:=OneSmallGroup(46,IsSolvable,true); <pc group of size 46 with 2 generators> gap> D:=DirectProduct(s,a); <group of size 2760 with 4 generators> gap> mua:=MinimalFaithfulPermutationDegree(a); 5 gap> mus:=MinimalFaithfulPermutationDegree(s); 23 gap> muD:=MinimalFaithfulPermutationDegree(D); 33 Thanks. _______________________________________________ Forum mailing list [email protected] https://mail.gap-system.org/mailman/listinfo/forum
