Dear all,

 Marston Conder refered to the paper :
MR0390040 (52 #10866)
Wright, 
D.<https://mathscinet-ams-org.ezproxy.auckland.ac.nz/mathscinet/search/author.html?mrauthid=225357>
Degrees of minimal embeddings for some direct products.
Amer. J. 
Math.<https://mathscinet-ams-org.ezproxy.auckland.ac.nz/mathscinet/search/journaldoc.html?id=776>
 97 
<https://mathscinet-ams-org.ezproxy.auckland.ac.nz/mathscinet/search/publications.html?pg1=ISSI&s1=229858>
 (1975), 
<https://mathscinet-ams-org.ezproxy.auckland.ac.nz/mathscinet/search/publications.html?pg1=ISSI&s1=229858>
 no. 
4,<https://mathscinet-ams-org.ezproxy.auckland.ac.nz/mathscinet/search/publications.html?pg1=ISSI&s1=229858>
 897–903.
20C99<https://mathscinet-ams-org.ezproxy.auckland.ac.nz/mathscinet/search/mscdoc.html?code=20C99>

Which states that the reverse of the inequality holds when the groups G, H have 
coprime orders

 Alexander Hulpke pointed that it was a bug....its worth to mention that it may 
not be this case in general considering the orders of the groups, for example:

gap> A:=AlternatingGroup(5);; oA:=Order(A);
60
gap> S:=OneSmallGroup(17,IsSolvable,true);oS:=Order(S);
<pc group of size 17 with 1 generators>
17
gap> D:=DirectProduct(S,A);;
gap> Gcd(oS,oA);
1
gap> muA:=MinimalFaithfulPermutationDegree(A);
5
gap> muS:=MinimalFaithfulPermutationDegree(S);
17
gap> muD:=MinimalFaithfulPermutationDegree(D);
85




Saad Owaid



_______________________________________________
Forum mailing list
[email protected]
https://mail.gap-system.org/mailman/listinfo/forum

Reply via email to