Dear Benoit, Ah — within a subspace will give you polynomial equations (all 2x2 subdeterminants=0) in the coefficients of a linear combination, and at least in principle this can be done with Groebner bases (i.e. you get rank <=1, but rank 0 is easily eliminated.)
For example (using the appended function) for the standard basis of Q^{3\times 4}: gap> b:=BasisVectors(Basis(MatrixSpace(Rationals,3,4)));; gap> e:=Rank1Equations(b); [ x_1*x_6-x_2*x_5, x_1*x_7-x_3*x_5, x_1*x_8-x_4*x_5, x_2*x_7-x_3*x_6, x_2*x_8-x_4*x_6, x_3*x_8-x_4*x_7, x_1*x_10-x_2*x_9, x_1*x_11-x_3*x_9, x_1*x_12-x_4*x_9, x_2*x_11-x_3*x_10, x_2*x_12-x_4*x_10, x_3*x_12-x_4*x_11, x_5*x_10-x_6*x_9, x_5*x_11-x_7*x_9, x_5*x_12-x_8*x_9, x_6*x_11-x_7*x_10, x_6*x_12-x_8*x_10, x_7*x_12-x_8*x_11 ] gap> ReducedGroebnerBasis(e,MonomialLexOrdering()); [ x_7*x_12-x_8*x_11, x_6*x_12-x_8*x_10, x_6*x_11-x_7*x_10, x_5*x_12-x_8*x_9, x_5*x_11-x_7*x_9, x_5*x_10-x_6*x_9, x_3*x_12-x_4*x_11, x_3*x_8-x_4*x_7, x_2*x_12-x_4*x_10, x_2*x_11-x_3*x_10, x_2*x_8-x_4*x_6, x_2*x_7-x_3*x_6, x_1*x_12-x_4*x_9, x_1*x_11-x_3*x_9, x_1*x_10-x_2*x_9, x_1*x_8-x_4*x_5, x_1*x_7-x_3*x_5, x_1*x_6-x_2*x_5 ] So x_7 =x_8*x_11/x_12 (and case for x_12=0) etc. and you can build an (ugly) parameterization from these. (Alternatively one could try to use \sum_c_i M_i=v\cdot w^T with v and w given by extra variables that are to be eliminated. This will yield the same Groebner basi after variable elimination.) Best, Alexander Rank1Equations:=function(mats) local l,f,r,vars,n,m,c,d,eqs; l:=Length(mats); f:=DefaultFieldOfMatrix(mats[1]); r:=PolynomialRing(f,l); vars:=IndeterminatesOfPolynomialRing(r); n:=Length(mats[1]); m:=Length(mats[1][1]); eqs:=[]; for c in Combinations([1..n],2) do for d in Combinations([1..m],2) do Add(eqs, Sum([1..l],x->vars[x]*mats[x][c[1]][d[1]]) *Sum([1..l],x->vars[x]*mats[x][c[2]][d[2]]) -Sum([1..l],x->vars[x]*mats[x][c[1]][d[2]]) *Sum([1..l],x->vars[x]*mats[x][c[2]][d[1]])); od; od; return eqs; end; _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum