Dear Robert, here is essentially how I did it:
(The generators this produces are different from the ones I sent earlier, because the details of the constructions differ.) ##### # finds generators of 2x2^3:L3(2) inside M22.2 slp:=AtlasStraightLineProgram("M22.2",5).program; # 3.M22.2 in dimension 12, std.gens. lifting those of M22.2 gens:=AtlasGenerators("3.M22.2",1).generators; # a subgroup of 3.(2x2^3:L3(2)) projecting onto 2x2^3:L3(2) hgens:=ResultOfStraightLineProgram(slp,gens); # indeed 2x2^3:L3(2) g:=Group(gens); h:=Group(hgens); Size(h); # go over to perm.rep, actually on 693 points iso:=IsomorphismPermGroup(g); LargestMovedPointPerm(gg); gg:=Image(iso,g); hh:=Image(iso,h); # action on cosets cos:=RightCosets(gg,hh); Length(cos); act:=Action(gg,cos,OnRight); LargestMovedPointPerm(act); ##### Best wishes, Jürgen _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum