On Tue, Nov 15, 2016 at 10:16:36PM +0100, Juergen Mueller wrote: > Dear Robert, > > here is essentially how I did it: > > (The generators this produces are different from the ones > I sent earlier, because the details of the constructions differ.) > > ##### > > # finds generators of 2x2^3:L3(2) inside M22.2 > slp:=AtlasStraightLineProgram("M22.2",5).program; > > # 3.M22.2 in dimension 12, std.gens. lifting those of M22.2 > gens:=AtlasGenerators("3.M22.2",1).generators; > > # a subgroup of 3.(2x2^3:L3(2)) projecting onto 2x2^3:L3(2) > hgens:=ResultOfStraightLineProgram(slp,gens); > > # indeed 2x2^3:L3(2) > g:=Group(gens); h:=Group(hgens); Size(h); > > # go over to perm.rep, actually on 693 points > iso:=IsomorphismPermGroup(g); LargestMovedPointPerm(gg); > gg:=Image(iso,g); hh:=Image(iso,h); > > # action on cosets > cos:=RightCosets(gg,hh); Length(cos); > act:=Action(gg,cos,OnRight); LargestMovedPointPerm(act);
That's more or less what I outlined in my message - 2x2^3:L3(2) is the stabiliser of a 7-clique in the 693-vertex graph. It's computationally faster to create the orbit of 990 7-subsets, but OK, that mattered a lot 25+ years ago, when that graph was constructed :-) Just in case, Dima > > ##### > > Best wishes, Jürgen > > > _______________________________________________ > Forum mailing list > Forum@mail.gap-system.org > http://mail.gap-system.org/mailman/listinfo/forum _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum