lidavidm commented on a change in pull request #12368: URL: https://github.com/apache/arrow/pull/12368#discussion_r808501334
########## File path: cpp/src/arrow/compute/kernels/hash_aggregate_test.cc ########## @@ -2460,6 +2461,294 @@ TEST(GroupBy, Distinct) { } } +TEST(GroupBy, OneMiscTypes) { + auto in_schema = schema({ + field("floats", float64()), + field("nulls", null()), + field("booleans", boolean()), + field("decimal128", decimal128(3, 2)), + field("decimal256", decimal256(3, 2)), + field("fixed_binary", fixed_size_binary(3)), + field("key", int64()), + }); + for (bool use_exec_plan : {true, false}) { + for (bool use_threads : {true, false}) { + SCOPED_TRACE(use_threads ? "parallel/merged" : "serial"); + + auto table = TableFromJSON(in_schema, {R"([ + [null, null, true, null, null, null, 1], + [1.0, null, true, "1.01", "1.01", "aaa", 1] +])", + R"([ + [0.0, null, false, "0.00", "0.00", "bac", 2], + [null, null, false, null, null, null, 3], + [4.0, null, null, "4.01", "4.01", "234", null], + [3.25, null, true, "3.25", "3.25", "ddd", 1], + [0.125, null, false, "0.12", "0.12", "bcd", 2] +])", + R"([ + [-0.25, null, false, "-0.25", "-0.25", "bab", 2], + [0.75, null, true, "0.75", "0.75", "123", null], + [null, null, true, null, null, null, 3] +])"}); + + ASSERT_OK_AND_ASSIGN(Datum aggregated_and_grouped, + GroupByTest( + { + table->GetColumnByName("floats"), + table->GetColumnByName("nulls"), + table->GetColumnByName("booleans"), + table->GetColumnByName("decimal128"), + table->GetColumnByName("decimal256"), + table->GetColumnByName("fixed_binary"), + }, + {table->GetColumnByName("key")}, + { + {"hash_one", nullptr}, + {"hash_one", nullptr}, + {"hash_one", nullptr}, + {"hash_one", nullptr}, + {"hash_one", nullptr}, + {"hash_one", nullptr}, + }, + use_threads, use_exec_plan)); + ValidateOutput(aggregated_and_grouped); + SortBy({"key_0"}, &aggregated_and_grouped); + + const auto& struct_arr = aggregated_and_grouped.array_as<StructArray>(); + // Check the key column + AssertDatumsEqual(ArrayFromJSON(int64(), R"([1, 2, 3, null])"), + struct_arr->field(struct_arr->num_fields() - 1)); + + // Check values individually + auto col_0_type = float64(); + const auto& col_0 = struct_arr->field(0); + EXPECT_THAT(col_0->GetScalar(0), + ResultWith(AnyOfJSON(col_0_type, R"([1.0, 3.25])"))); + EXPECT_THAT(col_0->GetScalar(1), + ResultWith(AnyOfJSON(col_0_type, R"([0.0, 0.125, -0.25])"))); + EXPECT_THAT(col_0->GetScalar(2), ResultWith(AnyOfJSON(col_0_type, R"([null])"))); + EXPECT_THAT(col_0->GetScalar(3), + ResultWith(AnyOfJSON(col_0_type, R"([4.0, 0.75])"))); + + auto col_1_type = null(); + const auto& col_1 = struct_arr->field(1); + EXPECT_THAT(col_1->GetScalar(0), ResultWith(AnyOfJSON(col_1_type, R"([null])"))); + EXPECT_THAT(col_1->GetScalar(1), ResultWith(AnyOfJSON(col_1_type, R"([null])"))); + EXPECT_THAT(col_1->GetScalar(2), ResultWith(AnyOfJSON(col_1_type, R"([null])"))); + EXPECT_THAT(col_1->GetScalar(3), ResultWith(AnyOfJSON(col_1_type, R"([null])"))); + + auto col_2_type = boolean(); + const auto& col_2 = struct_arr->field(2); + EXPECT_THAT(col_2->GetScalar(0), ResultWith(AnyOfJSON(col_2_type, R"([true])"))); + EXPECT_THAT(col_2->GetScalar(1), ResultWith(AnyOfJSON(col_2_type, R"([false])"))); + EXPECT_THAT(col_2->GetScalar(2), + ResultWith(AnyOfJSON(col_2_type, R"([true, false])"))); + EXPECT_THAT(col_2->GetScalar(3), + ResultWith(AnyOfJSON(col_2_type, R"([true, null])"))); + + auto col_3_type = decimal128(3, 2); + const auto& col_3 = struct_arr->field(3); + EXPECT_THAT(col_3->GetScalar(0), + ResultWith(AnyOfJSON(col_3_type, R"(["1.01", "3.25"])"))); + EXPECT_THAT(col_3->GetScalar(1), + ResultWith(AnyOfJSON(col_3_type, R"(["0.00", "0.12", "-0.25"])"))); + EXPECT_THAT(col_3->GetScalar(2), ResultWith(AnyOfJSON(col_3_type, R"([null])"))); + EXPECT_THAT(col_3->GetScalar(3), + ResultWith(AnyOfJSON(col_3_type, R"(["4.01", "0.75"])"))); + + auto col_4_type = decimal256(3, 2); + const auto& col_4 = struct_arr->field(4); + EXPECT_THAT(col_4->GetScalar(0), + ResultWith(AnyOfJSON(col_4_type, R"(["1.01", "3.25"])"))); + EXPECT_THAT(col_4->GetScalar(1), + ResultWith(AnyOfJSON(col_4_type, R"(["0.00", "0.12", "-0.25"])"))); + EXPECT_THAT(col_4->GetScalar(2), ResultWith(AnyOfJSON(col_4_type, R"([null])"))); + EXPECT_THAT(col_4->GetScalar(3), + ResultWith(AnyOfJSON(col_4_type, R"(["4.01", "0.75"])"))); + + auto col_5_type = fixed_size_binary(3); + const auto& col_5 = struct_arr->field(5); + EXPECT_THAT(col_5->GetScalar(0), + ResultWith(AnyOfJSON(col_5_type, R"(["aaa", "ddd"])"))); + EXPECT_THAT(col_5->GetScalar(1), + ResultWith(AnyOfJSON(col_5_type, R"(["bab", "bcd", "bac"])"))); + EXPECT_THAT(col_5->GetScalar(2), ResultWith(AnyOfJSON(col_5_type, R"([null])"))); + EXPECT_THAT(col_5->GetScalar(3), + ResultWith(AnyOfJSON(col_5_type, R"(["123", "234"])"))); + } + } +} + +TEST(GroupBy, OneNumericTypes) { + std::vector<std::shared_ptr<DataType>> types; + types.insert(types.end(), NumericTypes().begin(), NumericTypes().end()); + types.insert(types.end(), TemporalTypes().begin(), TemporalTypes().end()); + types.push_back(month_interval()); + + const std::vector<std::string> numeric_table_json = {R"([ + [null, 1], + [1, 1] + ])", + R"([ + [0, 2], + [null, 3], + [3, 4], + [5, 4], + [4, null], + [3, 1], + [0, 2] + ])", + R"([ + [0, 2], + [1, null], + [null, 3] + ])"}; + + const std::vector<std::string> temporal_table_json = {R"([ + [null, 1], + [86400000, 1] + ])", + R"([ + [0, 2], + [null, 3], + [259200000, 4], + [432000000, 4], + [345600000, null], + [259200000, 1], + [0, 2] + ])", + R"([ + [0, 2], + [86400000, null], + [null, 3] + ])"}; + + for (const auto& type : types) { + for (bool use_exec_plan : {true, false}) { + for (bool use_threads : {true, false}) { + SCOPED_TRACE(type->ToString()); + auto in_schema = schema({field("argument0", type), field("key", int64())}); + auto table = + TableFromJSON(in_schema, (type->name() == "date64") ? temporal_table_json + : numeric_table_json); + ASSERT_OK_AND_ASSIGN( + Datum aggregated_and_grouped, + GroupByTest({table->GetColumnByName("argument0")}, + {table->GetColumnByName("key")}, {{"hash_one", nullptr}}, + use_threads, use_exec_plan)); + ValidateOutput(aggregated_and_grouped); + SortBy({"key_0"}, &aggregated_and_grouped); + + const auto& struct_arr = aggregated_and_grouped.array_as<StructArray>(); + // Check the key column + AssertDatumsEqual(ArrayFromJSON(int64(), R"([1, 2, 3, 4, null])"), + struct_arr->field(struct_arr->num_fields() - 1)); + + // Check values individually + const auto& col = struct_arr->field(0); + if (type->name() == "date64") { + EXPECT_THAT(col->GetScalar(0), + ResultWith(AnyOfJSON(type, R"([86400000, 259200000])"))); + EXPECT_THAT(col->GetScalar(1), ResultWith(AnyOfJSON(type, R"([0])"))); + EXPECT_THAT(col->GetScalar(2), ResultWith(AnyOfJSON(type, R"([null])"))); + EXPECT_THAT(col->GetScalar(3), + ResultWith(AnyOfJSON(type, R"([259200000, 432000000])"))); + EXPECT_THAT(col->GetScalar(4), + ResultWith(AnyOfJSON(type, R"([345600000, 86400000])"))); + } else { + EXPECT_THAT(col->GetScalar(0), ResultWith(AnyOfJSON(type, R"([1, 3])"))); + EXPECT_THAT(col->GetScalar(1), ResultWith(AnyOfJSON(type, R"([0])"))); + EXPECT_THAT(col->GetScalar(2), ResultWith(AnyOfJSON(type, R"([null])"))); + EXPECT_THAT(col->GetScalar(3), ResultWith(AnyOfJSON(type, R"([3, 5])"))); + EXPECT_THAT(col->GetScalar(4), ResultWith(AnyOfJSON(type, R"([4, 1])"))); + } + } + } + } +} + +TEST(GroupBy, OneBinaryTypes) { + for (bool use_exec_plan : {true, false}) { + for (bool use_threads : {true, false}) { + for (const auto& type : BaseBinaryTypes()) { + SCOPED_TRACE(use_threads ? "parallel/merged" : "serial"); + + auto table = TableFromJSON(schema({ + field("argument0", type), + field("key", int64()), + }), + {R"([ + [null, 1], + ["aaaa", 1] +])", + R"([ + ["babcd",2], + [null, 3], + ["2", null], + ["d", 1], + ["bc", 2] +])", + R"([ + ["bcd", 2], + ["123", null], + [null, 3] +])"}); + + ASSERT_OK_AND_ASSIGN( + Datum aggregated_and_grouped, + GroupByTest({table->GetColumnByName("argument0")}, + {table->GetColumnByName("key")}, {{"hash_one", nullptr}}, + use_threads, use_exec_plan)); + ValidateOutput(aggregated_and_grouped); + SortBy({"key_0"}, &aggregated_and_grouped); + + const auto& struct_arr = aggregated_and_grouped.array_as<StructArray>(); + // Check the key column + AssertDatumsEqual(ArrayFromJSON(int64(), R"([1, 2, 3, null])"), + struct_arr->field(struct_arr->num_fields() - 1)); + + const auto& col = struct_arr->field(0); + EXPECT_THAT(col->GetScalar(0), ResultWith(AnyOfJSON(type, R"(["aaaa", "d"])"))); + EXPECT_THAT(col->GetScalar(1), + ResultWith(AnyOfJSON(type, R"(["bcd", "bc", "babcd"])"))); + EXPECT_THAT(col->GetScalar(2), ResultWith(AnyOfJSON(type, R"([null])"))); + EXPECT_THAT(col->GetScalar(3), ResultWith(AnyOfJSON(type, R"(["2", "123"])"))); + } + } + } +} + +TEST(GroupBy, OneScalar) { Review comment: ExecBatch, for each column, can either hold an array (as we've seen so far) or a scalar. A scalar is used to compress the representation when all values for a row in a batch are the same. So first off, the first value in each row above needs to be the exact same value: ``` input.batches = { ExecBatchFromJSON({ValueDescr::Scalar(int32()), int64()}, R"([[-1, 1], [-1, 1], [-1, 1], [-1, 1]])"), ``` however just because one batch has a scalar doesn't mean that all batches do, that's why the third batch is different above -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: github-unsubscr...@arrow.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org