kosiew commented on issue #15636:
URL: https://github.com/apache/datafusion/issues/15636#issuecomment-2795739270
amended the script to filter for p < 0.05 results only
```python
#!/usr/bin/env python3
import os
import json
from bs4 import BeautifulSoup
import re
import typer
from typing import Optional, List
from pathlib import Path
from rich.console import Console
from rich.table import Table
from rich import print as rprint
app = typer.Typer()
console = Console()
# Constants
DEFAULT_CRITERION_DIR = Path.home() / ".cargo" / "target" / "criterion"
def find_criterion_dir() -> Path:
"""Locate the criterion directory in the user's cargo target
directory."""
if DEFAULT_CRITERION_DIR.exists():
return DEFAULT_CRITERION_DIR
raise FileNotFoundError(
"Could not find criterion directory. Please specify path explicitly."
)
def parse_benchmark_report(benchmark_dir: Path) -> dict:
"""Parse the index.html report file for a benchmark to extract
performance data."""
report_file = benchmark_dir / "report" / "index.html"
print(f"==> Checking for file: {report_file}")
if not report_file.exists():
print(f"==> File does not exist: {report_file}")
return None
try:
with open(report_file, "r") as f:
html_content = f.read()
soup = BeautifulSoup(html_content, "html.parser")
print(f"==> Successfully parsed HTML for {benchmark_dir.name}")
# Extract performance data from the HTML
data = {}
# Find tables that contain performance data
tables = soup.find_all("table")
print(f"==> Found {len(tables)} tables in the report")
for table in tables:
# Find rows that contain "Change in time"
change_rows = table.find_all(
"tr",
string=lambda text: (
text and "Change in time" in text if text else False
),
)
if not change_rows:
# Try another approach - find td with "Change in time" text
for row in table.find_all("tr"):
cells = row.find_all("td")
if cells and len(cells) > 0 and "Change in time" in
cells[0].text:
print(f"==> Found 'Change in time' row")
# The percentage change is in the middle column
(index 2)
if len(cells) > 2:
change_text = cells[2].text.strip()
change_match = re.search(r"([+-]?\d+\.\d+)%",
change_text)
if change_match:
percentage = float(change_match.group(1))
print(f"==> Found percentage change:
{percentage}%")
if "mean" not in data:
data["mean"] = {}
data["mean"]["point_estimate"] = percentage
/ 100
# The p-value is in the last column
if len(cells) > 4:
p_value_text = cells[4].text.strip()
p_value_match = re.search(
r"p\s*=\s*(\d+\.\d+)", p_value_text
)
if (
not p_value_match
): # Try another format for p = 0.00 < 0.05
p_value_match = re.search(
r"p\s*=\s*(\d+\.\d+)\s*[<>=]",
p_value_text
)
if p_value_match:
p_value = float(p_value_match.group(1))
print(f"==> Found p-value: {p_value}")
if "mean" not in data:
data["mean"] = {}
data["mean"]["p_value"] = p_value
# If we found mean data, add a placeholder for median with the same
values
# This is a simplification since your HTML example only showed one
row
if "mean" in data:
data["median"] = data["mean"].copy()
print(f"==> Extracted data: {data}")
return data
except Exception as e:
print(f"==> Error parsing report: {e}")
import traceback
print(traceback.format_exc())
return None
def get_benchmark_change(data: dict) -> dict:
"""Extract the relevant change metrics from the estimates data."""
if not data or "mean" not in data:
print(f"==> Invalid data format in get_benchmark_change")
return None
result = {
"mean_change": data["mean"]["point_estimate"],
"mean_pct": data["mean"]["point_estimate"] * 100,
"mean_p_value": data["mean"].get(
"p_value", 1.0
), # Default to 1.0 if not present
"median_change": data["median"]["point_estimate"],
"median_pct": data["median"]["point_estimate"] * 100,
"median_p_value": data["median"].get(
"p_value", 1.0
), # Default to 1.0 if not present
}
print(
f"==> Extracted change data: mean_pct={result['mean_pct']:.2f}%,
p_value={result['mean_p_value']}"
)
return result
def get_default_criterion_dir() -> Path:
"""Return the default Criterion directory path."""
return DEFAULT_CRITERION_DIR
def get_default_output_file(criterion_dir: Path = None) -> str:
"""Return the default output file path in the report folder."""
if criterion_dir is None:
criterion_dir = get_default_criterion_dir()
report_dir = criterion_dir / "report"
if not report_dir.exists():
report_dir.mkdir(exist_ok=True)
return str(report_dir / "summary_critcmp.txt")
def format_percentage(value: float) -> str:
"""Format a number as a percentage string with +/- sign."""
if value < 0:
return f"[green]-{abs(value):.2f}%[/green]" # Improvement (negative
is good)
else:
return f"[red]+{value:.2f}%[/red]" # Regression
@app.command()
def analyze(
criterion_dir: Path = typer.Option(
get_default_criterion_dir(),
"--dir",
"-d",
help="Path to the criterion directory",
exists=True,
dir_okay=True,
file_okay=False,
),
threshold: float = typer.Option(
1.0, "--threshold", "-t", help="Threshold percentage for significant
changes"
),
output_file: str = typer.Option(
None, # None here to allow dynamic default based on criterion_dir
"--output",
"-o",
help="Output file for the summary (defaults to
<criterion_dir>/report/summary_critcmp.txt)",
),
detailed: bool = typer.Option(False, "--detailed", help="Show detailed
metrics"),
p_value_threshold: float = typer.Option(
0.05,
"--p-value",
"-p",
help="P-value threshold for statistical significance (default:
0.05)",
),
):
"""Analyze Criterion benchmark results and summarize improvements and
regressions.
This script should be run after executing 'cargo bench' twice:
1. First run 'cargo bench' for your baseline/current code
2. Then make your changes and run 'cargo bench' again
The script will then analyze and summarize the performance differences
between
the baseline and your changes, highlighting improvements and regressions.
Only statistically significant changes (p < 0.05) are included by
default.
"""
# Set default output file if not specified
if output_file is None:
output_file = get_default_output_file(criterion_dir)
# Create table for results
table = Table(
title="Criterion Benchmark Summary (Statistically Significant
Changes)"
)
table.add_column("Benchmark", style="cyan")
table.add_column("Mean Change", justify="right")
table.add_column("P-value", justify="right")
if detailed:
table.add_column("Median Change", justify="right")
# Find all benchmark directories
benchmark_dirs = [
d for d in criterion_dir.iterdir() if d.is_dir() and d.name !=
"report"
]
results = []
for benchmark_dir in benchmark_dirs:
print(f"\n==> Processing benchmark: {benchmark_dir.name}")
data = parse_benchmark_report(benchmark_dir)
if data:
change_data = get_benchmark_change(data)
if change_data:
print(
f"==> Checking threshold:
abs({change_data['mean_pct']:.2f}) >= {threshold} =
{abs(change_data['mean_pct']) >= threshold}"
)
print(
f"==> Checking p-value: {change_data['mean_p_value']} <
{p_value_threshold} = {change_data['mean_p_value'] < p_value_threshold}"
)
# Only include changes above threshold AND statistically
significant
if (
abs(change_data["mean_pct"]) >= threshold
and change_data["mean_p_value"] < p_value_threshold
):
print(
f"==> INCLUDED: Benchmark '{benchmark_dir.name}'
meets criteria"
)
benchmark_name = benchmark_dir.name
mean_formatted =
format_percentage(change_data["mean_pct"])
p_value = f"{change_data['mean_p_value']:.6f}"
if detailed:
median_formatted =
format_percentage(change_data["median_pct"])
table.add_row(
benchmark_name, mean_formatted, p_value,
median_formatted
)
results.append(
(
benchmark_name,
change_data["mean_pct"],
change_data["mean_p_value"],
change_data["median_pct"],
)
)
else:
table.add_row(benchmark_name, mean_formatted,
p_value)
results.append(
(
benchmark_name,
change_data["mean_pct"],
change_data["mean_p_value"],
)
)
else:
print(
f"==> EXCLUDED: Benchmark '{benchmark_dir.name}'
doesn't meet criteria"
)
else:
print(f"==> No valid change data for {benchmark_dir.name}")
else:
print(f"==> No data found for {benchmark_dir.name}")
# Sort results by benchmark name
results.sort(key=lambda x: x[0])
# Rebuild the table with sorted results
table = Table(
title="Criterion Benchmark Summary (Statistically Significant
Changes)"
)
table.add_column("Benchmark", style="cyan")
table.add_column("Mean Change", justify="right")
table.add_column("P-value", justify="right")
if detailed:
table.add_column("Median Change", justify="right")
for result in results:
benchmark_name = result[0]
mean_pct = result[1]
p_value = f"{result[2]:.6f}"
mean_formatted = format_percentage(mean_pct)
if detailed and len(result) > 3:
median_formatted = format_percentage(result[3])
table.add_row(benchmark_name, mean_formatted, p_value,
median_formatted)
else:
table.add_row(benchmark_name, mean_formatted, p_value)
# Display results
console.print(table)
# Summary statistics
improvements = sum(1 for r in results if r[1] < 0)
regressions = sum(1 for r in results if r[1] > 0)
console.print(
f"\nSummary: {improvements} improvements, {regressions} regressions
(p < {p_value_threshold})"
)
# Save to file if requested
if output_file:
with open(output_file, "w") as f:
f.write(
f"Criterion Benchmark Summary (Statistically Significant
Changes p < {p_value_threshold})\n\n"
)
for result in results:
benchmark_name = result[0]
mean_pct = result[1]
p_value = result[2]
sign = "-" if mean_pct < 0 else "+"
f.write(
f"{benchmark_name}: {sign}{abs(mean_pct):.2f}%
(p={p_value:.6f})\n"
)
f.write(
f"\nSummary: {improvements} improvements, {regressions}
regressions\n"
)
console.print(f"Results saved to {output_file}")
if __name__ == "__main__":
app()
```
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]