Jefffrey commented on code in PR #17255:
URL: https://github.com/apache/datafusion/pull/17255#discussion_r2287475500
##########
datafusion/functions-aggregate/src/average.rs:
##########
@@ -114,79 +115,95 @@ impl AggregateUDFImpl for Avg {
}
fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn
Accumulator>> {
- if acc_args.is_distinct {
- return exec_err!("avg(DISTINCT) aggregations are not available");
- }
+ let data_type = acc_args.exprs[0].data_type(acc_args.schema)?;
use DataType::*;
- let data_type = acc_args.exprs[0].data_type(acc_args.schema)?;
// instantiate specialized accumulator based for the type
- match (&data_type, acc_args.return_field.data_type()) {
- (Float64, Float64) => Ok(Box::<AvgAccumulator>::default()),
- (
- Decimal128(sum_precision, sum_scale),
- Decimal128(target_precision, target_scale),
- ) => Ok(Box::new(DecimalAvgAccumulator::<Decimal128Type> {
- sum: None,
- count: 0,
- sum_scale: *sum_scale,
- sum_precision: *sum_precision,
- target_precision: *target_precision,
- target_scale: *target_scale,
- })),
-
- (
- Decimal256(sum_precision, sum_scale),
- Decimal256(target_precision, target_scale),
- ) => Ok(Box::new(DecimalAvgAccumulator::<Decimal256Type> {
- sum: None,
- count: 0,
- sum_scale: *sum_scale,
- sum_precision: *sum_precision,
- target_precision: *target_precision,
- target_scale: *target_scale,
- })),
-
- (Duration(time_unit), Duration(result_unit)) => {
- Ok(Box::new(DurationAvgAccumulator {
+ if acc_args.is_distinct {
+ match &data_type {
+ // Numeric types are converted to Float64 via
`coerce_avg_type` during logical plan creation
+ Float64 =>
Ok(Box::new(Float64DistinctAvgAccumulator::default())),
+ _ => exec_err!("AVG(DISTINCT) for {} not supported",
data_type),
+ }
+ } else {
+ match (&data_type, acc_args.return_field.data_type()) {
+ (Float64, Float64) => Ok(Box::<AvgAccumulator>::default()),
+ (
+ Decimal128(sum_precision, sum_scale),
+ Decimal128(target_precision, target_scale),
+ ) => Ok(Box::new(DecimalAvgAccumulator::<Decimal128Type> {
sum: None,
count: 0,
- time_unit: *time_unit,
- result_unit: *result_unit,
- }))
- }
+ sum_scale: *sum_scale,
+ sum_precision: *sum_precision,
+ target_precision: *target_precision,
+ target_scale: *target_scale,
+ })),
+
+ (
+ Decimal256(sum_precision, sum_scale),
+ Decimal256(target_precision, target_scale),
+ ) => Ok(Box::new(DecimalAvgAccumulator::<Decimal256Type> {
+ sum: None,
+ count: 0,
+ sum_scale: *sum_scale,
+ sum_precision: *sum_precision,
+ target_precision: *target_precision,
+ target_scale: *target_scale,
+ })),
+
+ (Duration(time_unit), Duration(result_unit)) => {
+ Ok(Box::new(DurationAvgAccumulator {
+ sum: None,
+ count: 0,
+ time_unit: *time_unit,
+ result_unit: *result_unit,
+ }))
+ }
- _ => exec_err!(
- "AvgAccumulator for ({} --> {})",
- &data_type,
- acc_args.return_field.data_type()
- ),
+ _ => exec_err!(
+ "AvgAccumulator for ({} --> {})",
+ &data_type,
+ acc_args.return_field.data_type()
+ ),
+ }
}
}
fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<FieldRef>> {
- Ok(vec![
- Field::new(
- format_state_name(args.name, "count"),
- DataType::UInt64,
- true,
- ),
- Field::new(
- format_state_name(args.name, "sum"),
- args.input_fields[0].data_type().clone(),
- true,
- ),
- ]
- .into_iter()
- .map(Arc::new)
- .collect())
+ if args.is_distinct {
+ // Copied from
datafusion_functions_aggregate::sum::Sum::state_fields
+ // since the accumulator uses DistinctSumAccumulator internally.
+ Ok(vec![Field::new_list(
+ format_state_name(args.name, "sum distinct"),
+ Field::new_list_field(args.return_type().clone(), true),
+ false,
+ )
+ .into()])
+ } else {
+ Ok(vec![
+ Field::new(
+ format_state_name(args.name, "count"),
+ DataType::UInt64,
+ true,
+ ),
+ Field::new(
+ format_state_name(args.name, "sum"),
+ args.input_fields[0].data_type().clone(),
+ true,
+ ),
+ ]
+ .into_iter()
+ .map(Arc::new)
+ .collect())
+ }
}
fn groups_accumulator_supported(&self, args: AccumulatorArgs) -> bool {
matches!(
args.return_field.data_type(),
DataType::Float64 | DataType::Decimal128(_, _) |
DataType::Duration(_)
- )
+ ) && !args.is_distinct
Review Comment:
Similar to how sum handles it:
https://github.com/apache/datafusion/blob/8c58f532a1ed29dc8b8d70b87ee33a4745325e8f/datafusion/functions-aggregate/src/sum.rs#L223-L225
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]