[ https://issues.apache.org/jira/browse/HDFS-9668?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15669168#comment-15669168 ]
Lei (Eddy) Xu commented on HDFS-9668: ------------------------------------- Hi, [~jingcheng...@intel.com] Thanks for taking feedbacks quickly. I have a few questions regarding to the latest patch {{v-23}}. * Could you help to clarify what does {{datasetWriteLock}} protect? I thought it protected {{FsDatasetImpl#volumes}}. Because for {{FsDatasetImpl#volumeMap}}, some functions like {{createRbw}} and {{finalizeBlock}} use {{readLock}} to protect {{volumeMap#add}}, while in {{moveBlock()}} it uses {{writeLock}} to protect {{finalizedReplica()}}, which seems to protect {{volumeMap.add()}} as well? * And in {{unfinalizedBlock}}, it uses {{read lock}} to protect {{volumeMap.remove()}}? * In a few places, it looks to me that we should use {{read lock}}, i.e., {{FsDatasetImpl#getBlockReports()}}, {{getFinalizedBlocks()}} {{moveBlockAcrossStorage()}}, {{moveBlock()}}. * If the {{replicaMap}} is protected by {{read/write lock}}, does {{replicaMap}} still need the {{mutex}}? * Should {{moveBlock()}} hold {{readLock}} and {{block lock}}? * [~xiaochen] also mentioned that {{private fianlizeReplica()}} are called from different places with different locking policies. For example, {{public void finalizeBlock()}} uses read lock while in {{moveBlock()}} it uses write lock. Overall, it is a great work that would benefit all. Shall we get some consensus of the purposes for each lock ({{read/write}} locks and {{ReplicaMap#mutex}}) before we commit this ? Ping [~arpitagarwal], do the above concerns make sense? > Optimize the locking in FsDatasetImpl > ------------------------------------- > > Key: HDFS-9668 > URL: https://issues.apache.org/jira/browse/HDFS-9668 > Project: Hadoop HDFS > Issue Type: Improvement > Components: datanode > Reporter: Jingcheng Du > Assignee: Jingcheng Du > Attachments: HDFS-9668-1.patch, HDFS-9668-10.patch, > HDFS-9668-11.patch, HDFS-9668-12.patch, HDFS-9668-13.patch, > HDFS-9668-14.patch, HDFS-9668-14.patch, HDFS-9668-15.patch, > HDFS-9668-16.patch, HDFS-9668-17.patch, HDFS-9668-18.patch, > HDFS-9668-19.patch, HDFS-9668-19.patch, HDFS-9668-2.patch, > HDFS-9668-20.patch, HDFS-9668-21.patch, HDFS-9668-22.patch, > HDFS-9668-23.patch, HDFS-9668-23.patch, HDFS-9668-3.patch, HDFS-9668-4.patch, > HDFS-9668-5.patch, HDFS-9668-6.patch, HDFS-9668-7.patch, HDFS-9668-8.patch, > HDFS-9668-9.patch, execution_time.png > > > During the HBase test on a tiered storage of HDFS (WAL is stored in > SSD/RAMDISK, and all other files are stored in HDD), we observe many > long-time BLOCKED threads on FsDatasetImpl in DataNode. The following is part > of the jstack result: > {noformat} > "DataXceiver for client DFSClient_NONMAPREDUCE_-1626037897_1 at > /192.168.50.16:48521 [Receiving block > BP-1042877462-192.168.50.13-1446173170517:blk_1073779272_40852]" - Thread > t@93336 > java.lang.Thread.State: BLOCKED > at > org.apache.hadoop.hdfs.server.datanode.fsdataset.impl.FsDatasetImpl.createRbw(FsDatasetImpl.java:1111) > - waiting to lock <18324c9> (a > org.apache.hadoop.hdfs.server.datanode.fsdataset.impl.FsDatasetImpl) owned by > "DataXceiver for client DFSClient_NONMAPREDUCE_-1626037897_1 at > /192.168.50.16:48520 [Receiving block > BP-1042877462-192.168.50.13-1446173170517:blk_1073779271_40851]" t@93335 > at > org.apache.hadoop.hdfs.server.datanode.fsdataset.impl.FsDatasetImpl.createRbw(FsDatasetImpl.java:113) > at > org.apache.hadoop.hdfs.server.datanode.BlockReceiver.<init>(BlockReceiver.java:183) > at > org.apache.hadoop.hdfs.server.datanode.DataXceiver.writeBlock(DataXceiver.java:615) > at > org.apache.hadoop.hdfs.protocol.datatransfer.Receiver.opWriteBlock(Receiver.java:137) > at > org.apache.hadoop.hdfs.protocol.datatransfer.Receiver.processOp(Receiver.java:74) > at > org.apache.hadoop.hdfs.server.datanode.DataXceiver.run(DataXceiver.java:235) > at java.lang.Thread.run(Thread.java:745) > Locked ownable synchronizers: > - None > > "DataXceiver for client DFSClient_NONMAPREDUCE_-1626037897_1 at > /192.168.50.16:48520 [Receiving block > BP-1042877462-192.168.50.13-1446173170517:blk_1073779271_40851]" - Thread > t@93335 > java.lang.Thread.State: RUNNABLE > at java.io.UnixFileSystem.createFileExclusively(Native Method) > at java.io.File.createNewFile(File.java:1012) > at > org.apache.hadoop.hdfs.server.datanode.DatanodeUtil.createTmpFile(DatanodeUtil.java:66) > at > org.apache.hadoop.hdfs.server.datanode.fsdataset.impl.BlockPoolSlice.createRbwFile(BlockPoolSlice.java:271) > at > org.apache.hadoop.hdfs.server.datanode.fsdataset.impl.FsVolumeImpl.createRbwFile(FsVolumeImpl.java:286) > at > org.apache.hadoop.hdfs.server.datanode.fsdataset.impl.FsDatasetImpl.createRbw(FsDatasetImpl.java:1140) > - locked <18324c9> (a > org.apache.hadoop.hdfs.server.datanode.fsdataset.impl.FsDatasetImpl) > at > org.apache.hadoop.hdfs.server.datanode.fsdataset.impl.FsDatasetImpl.createRbw(FsDatasetImpl.java:113) > at > org.apache.hadoop.hdfs.server.datanode.BlockReceiver.<init>(BlockReceiver.java:183) > at > org.apache.hadoop.hdfs.server.datanode.DataXceiver.writeBlock(DataXceiver.java:615) > at > org.apache.hadoop.hdfs.protocol.datatransfer.Receiver.opWriteBlock(Receiver.java:137) > at > org.apache.hadoop.hdfs.protocol.datatransfer.Receiver.processOp(Receiver.java:74) > at > org.apache.hadoop.hdfs.server.datanode.DataXceiver.run(DataXceiver.java:235) > at java.lang.Thread.run(Thread.java:745) > Locked ownable synchronizers: > - None > {noformat} > We measured the execution of some operations in FsDatasetImpl during the > test. Here following is the result. > !execution_time.png! > The operations of finalizeBlock, addBlock and createRbw on HDD in a heavy > load take a really long time. > It means one slow operation of finalizeBlock, addBlock and createRbw in a > slow storage can block all the other same operations in the same DataNode, > especially in HBase when many wal/flusher/compactor are configured. > We need a finer grained lock mechanism in a new FsDatasetImpl implementation > and users can choose the implementation by configuring > "dfs.datanode.fsdataset.factory" in DataNode. > We can implement the lock by either storage level or block-level. -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: hdfs-issues-unsubscr...@hadoop.apache.org For additional commands, e-mail: hdfs-issues-h...@hadoop.apache.org