[ 
https://issues.apache.org/jira/browse/FLINK-2297?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14611762#comment-14611762
 ] 

ASF GitHub Bot commented on FLINK-2297:
---------------------------------------

Github user tillrohrmann commented on a diff in the pull request:

    https://github.com/apache/flink/pull/874#discussion_r33764905
  
    --- Diff: 
flink-staging/flink-ml/src/main/scala/org/apache/flink/ml/classification/SVM.scala
 ---
    @@ -242,8 +297,17 @@ object SVM{
             }
           }
     
    -      override def predict(value: T, model: DenseVector): Double = {
    -        value.asBreeze dot model.asBreeze
    +      override def predict(value: T, model: DenseVector):
    +        Double = {
    +
    +        val rawValue = value.asBreeze dot model.asBreeze
    +
    +        if (outputDecisionFunction) {
    +          rawValue
    +        }
    +        else {
    --- End diff --
    
    formatting


> Add threshold setting for SVM binary predictions
> ------------------------------------------------
>
>                 Key: FLINK-2297
>                 URL: https://issues.apache.org/jira/browse/FLINK-2297
>             Project: Flink
>          Issue Type: Improvement
>          Components: Machine Learning Library
>            Reporter: Theodore Vasiloudis
>            Assignee: Theodore Vasiloudis
>            Priority: Minor
>              Labels: ML
>             Fix For: 0.10
>
>
> Currently SVM outputs the raw decision function values when using the predict 
> function.
> We should have instead the ability to set a threshold above which examples 
> are labeled as positive (1.0) and below negative (-1.0). Then the prediction 
> function can be directly used for evaluation.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

Reply via email to