Fokko commented on code in PR #1539:
URL: https://github.com/apache/iceberg-python/pull/1539#discussion_r1922765663
##########
pyiceberg/io/pyarrow.py:
##########
@@ -2594,42 +2566,46 @@ def _determine_partitions(spec: PartitionSpec, schema:
Schema, arrow_table: pa.T
We then retrieve the partition keys by offsets.
And slice the arrow table by offsets and lengths of each partition.
"""
- partition_columns: List[Tuple[PartitionField, NestedField]] = [
- (partition_field, schema.find_field(partition_field.source_id)) for
partition_field in spec.fields
- ]
- partition_values_table = pa.table(
- {
- str(partition.field_id):
partition.transform.pyarrow_transform(field.field_type)(arrow_table[field.name])
- for partition, field in partition_columns
- }
- )
+ # Assign unique names to columns where the partition transform has been
applied
+ # to avoid conflicts
+ partition_fields = [f"_partition_{field.name}" for field in spec.fields]
+
+ for partition, name in zip(spec.fields, partition_fields):
+ source_field = schema.find_field(partition.source_id)
+ arrow_table = arrow_table.append_column(
+ name,
partition.transform.pyarrow_transform(source_field.field_type)(arrow_table[source_field.name])
+ )
+
+ unique_partition_fields =
arrow_table.select(partition_fields).group_by(partition_fields).aggregate([])
Review Comment:
Thanks, good point. If the tests are stable, I don't think we need stable
ordering to allow for better performance using multithreading
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]