[ 
https://issues.apache.org/jira/browse/SOLR-13903?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Ahmed Adel updated SOLR-13903:
------------------------------
    Description: 
Using features and train stream sources generate a model with TP, TN, FP, FN 
fields. For some reason, the summation of the values of these fields is 
sometimes less than the training set size.

 How to regenerate:

1. Create two collections: cellphones and cellphones-model

2. Indexing the attached dataset into cellphones

3. Run the following expression:

{{commit(cellphones-model,update(cellphones-model,batchSize=500,}}
{{   train(cellphones,}}
{{     features(cellphones, q="*:*", featureSet="featureSet",}}
{{ field="title_t",}}
{{ outcome="brand_i", numTerms=25),}}
{{ q="*:*",}}
{{ name="cellphones-classification-model",}}
{{ field="title_t",}}
{{ outcome="brand_i",}}
{{ maxIterations=100)))}}

4. Run the following query to retrieve confusion matrix:

{{search 
q=*:*&collection=cellphones-model&fl=name_s,trueNegative_i,truePositive_i,falseNegative_i,falsePositive_i,iteration_i&sort=iteration_i%20desc&rows=100}}

The summation of the metrics TP, TN, FP, FN is always less than the training 
set size by one in this instance for all iterations.

  was:
Using features and train stream sources generate a model with TP, TN, FP, FN 
fields. For some reason, the summation of the values of these fields is 
sometimes less than the training set size.

 How to regenerate:
 # Create two collections: cellphones and cellphones-model
 # Indexing the attached dataset into cellphones
 # Run the following expression:

{{commit(cellphones-model,update(cellphones-model,batchSize=500,
  train(cellphones,
    features(cellphones, q="*:*", featureSet="featureSet",
field="title_t",
outcome="brand_i", numTerms=25),
q="*:*",
name="cellphones-classification-model",
field="title_t",
outcome="brand_i",
maxIterations=100)))

}}
 # Run the following query to retrieve confusion matrix:

{{search 
q=*:*&collection=cellphones-model&fl=name_s,trueNegative_i,truePositive_i,falseNegative_i,falsePositive_i,iteration_i&sort=iteration_i%20desc&rows=100}}

The summation of the metrics TP, TN, FP, FN is always less than the training 
set size by one in this instance for all iterations.


> Classification Model Confusion Matrix Discrepancy
> -------------------------------------------------
>
>                 Key: SOLR-13903
>                 URL: https://issues.apache.org/jira/browse/SOLR-13903
>             Project: Solr
>          Issue Type: Bug
>      Security Level: Public(Default Security Level. Issues are Public) 
>          Components: streaming expressions
>    Affects Versions: 8.2
>            Reporter: Ahmed Adel
>            Priority: Major
>              Labels: classification
>         Attachments: cellphones.csv
>
>
> Using features and train stream sources generate a model with TP, TN, FP, FN 
> fields. For some reason, the summation of the values of these fields is 
> sometimes less than the training set size.
>  How to regenerate:
> 1. Create two collections: cellphones and cellphones-model
> 2. Indexing the attached dataset into cellphones
> 3. Run the following expression:
> {{commit(cellphones-model,update(cellphones-model,batchSize=500,}}
> {{   train(cellphones,}}
> {{     features(cellphones, q="*:*", featureSet="featureSet",}}
> {{ field="title_t",}}
> {{ outcome="brand_i", numTerms=25),}}
> {{ q="*:*",}}
> {{ name="cellphones-classification-model",}}
> {{ field="title_t",}}
> {{ outcome="brand_i",}}
> {{ maxIterations=100)))}}
> 4. Run the following query to retrieve confusion matrix:
> {{search 
> q=*:*&collection=cellphones-model&fl=name_s,trueNegative_i,truePositive_i,falseNegative_i,falsePositive_i,iteration_i&sort=iteration_i%20desc&rows=100}}
> The summation of the metrics TP, TN, FP, FN is always less than the training 
> set size by one in this instance for all iterations.



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@lucene.apache.org
For additional commands, e-mail: issues-h...@lucene.apache.org

Reply via email to